Members Can Post Anonymously On This Site
NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ResilienX employees Angelo Niforatos, left, and Ryan Pleskach, right, overview the NASA safety tools integrated into the company’s commercial system, July 11, 2025, at the ResilienX Headquarters in Syracuse, New York. Credit: ResilienX A future with advanced air mobility aircraft populating the skies will require the U.S. to implement enhanced preflight planning that can mitigate potential risks well before takeoff – and NASA is working to develop the tools to make that happen.
Preflight planning is critical to ensuring safety in the complex, high-risk environments of the future airspace. Timely, predictive, and up-to-date risk assessment within a single platform makes it much easier for drone or air taxi operators to check flight plans for high-risk concerns.
NASA is working on tools to deliver those services, and in June, the agency and aviation safety company ResilienX Inc. demonstrated how these tools can be integrated into commercial systems.
During a series of tests conducted at ResilienX’s facility in Syracuse, New York, researchers used NASA services that allowed flight operators to submit flight plans prior to departure, obtain risk assessment results, and then decide whether to proceed with flights or change their flight plans and re-assess risks. Allowing operators to perform these tasks quickly reduces the safety risk to flight passengers as well as humans on the ground.
The three NASA-developed services are intended to assess unique risks associated with highly automated aircraft flying at low altitudes over cities.
The partnership was managed under a Phase III NASA Small Business Innovation Research (SBIR) contract, which is an extension of prior work to assess weather-related risks. This collaboration is already leading to direct technology transfer of safety systems into ResilienX’s platform. The partnership is also intended to provide indirect benefits for ResilienX partners and customers, such as the U.S. Air Force and regional operators, helping to advance the overall safety of future airspace operations.
This work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission. The mission seeks to deliver data, findings, and recommendations to guide the industry’s development of future air taxis and drones.
Share
Details
Last Updated Aug 22, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
Armstrong Flight Research Center Advanced Air Mobility Aeronautics Aeronautics Research Mission Directorate Airspace Operations and Safety Program Drones & You Small Business Innovation Research / Small Business System-Wide Safety Explore More
5 min read National Aviation Day: Celebrating NASA’s Heritage While Charting Our Future
Article 3 days ago 5 min read NASA Invites You to Celebrate National Aviation Day 2025
Article 3 days ago 4 min read NASA Tests Research Aircraft to Improve Air Taxi Flight Controls
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 Min Read La NASA revela los finalistas del concurso de diseño de la mascota lunar de Artemis II
Read this story in English here.
La NASA ya tiene 25 finalistas para el diseño del indicador de gravedad cero de Artemis II que volará con la tripulación de esta misión alrededor de la Luna y de regreso a la Tierra el próximo año.
Los astronautas Reid Wiseman, Victor Glover y Christina Koch de la NASA, y el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen pronto seleccionarán uno de los diseños finalistas para que les acompañe dentro de la nave espacial Orion como su mascota lunar.
“El indicador de gravedad cero de Artemis II será especial para la tripulación”, dijo Reid Wiseman, comandante de Artemis II. “En una nave espacial llena de equipos y herramientas complejas que mantienen viva a la tripulación en el espacio profundo, el indicador es una forma amigable y útil de resaltar el elemento humano que es tan crítico para nuestra exploración del universo. Nuestra tripulación está entusiasmada con estos diseños provenientes de muchos lugares del mundo y esperamos con interés llevar al ganador con nosotros en este viaje”.
Un indicador de gravedad cero es un pequeño peluche que típicamente viaja con la tripulación para indicar visualmente el momento en que llegan al espacio. Durante los primeros ocho minutos después del despegue, la tripulación y el indicador, que estará situado cerca de ellos, seguirán siendo presionados contra sus asientos por la gravedad y la fuerza de la subida al espacio. Cuando se apaguen los motores principales de la etapa central del cohete Sistema de Lanzamiento Espacial (SLS, por sus siglas en inglés), se eliminarán las restricciones de la gravedad, pero la tripulación seguirá atada de manera segura a sus asientos: la capacidad de flotar de su indicador de gravedad cero será la evidencia de que han llegado al espacio.
Artemis II será la primera misión en la que el público haya participado en la creación de la mascota de la tripulación.
Estos diseños, con ideas que abarcan desde versiones lunares de criaturas terrestres hasta visiones creativas sobre la exploración y el descubrimiento, fueron seleccionados entre más de 2.600 propuestas procedentes de más de 50 países, e incluyen diseños de estudiantes desde primaria a secundaria. Los finalistas representan a 10 países, entre los que están Estados Unidos, Canadá, Colombia, Finlandia, Francia, Alemania, Japón, Perú, Singapur y Gales.
Mira aquí los diseños finalistas:
Lucas Ye | Mountain View, California“Rise” Kenan Ziyan | Canyon, Texas“Zappy Zebra” Royal School, SKIES Space Club | Winnipeg, Manitoba, Canada“Luna the Space Polar Bear” Garden County Schools | Oshkosh, Nebraska“Team GarCo” Richellea Quinn Wijaya | Singapore“Parsec – The Bird That Flew to the Moon” Anzhelika Iudakova | Finland“Big Steps of Little Octopus” Congressional School | Falls Church, Virginia“Astra-Jelly” Congressional School | Falls Church, Virginia“Harper, Chloe, and Mateo’s ZGI” Alexa Pacholyk | Madison, Connecticut“Artemis” Leila Fleury | Rancho Palos Verdes, California“Beeatrice” Oakville Trafalgar School | Oakville, Ontario, Canada“Lepus the Moon Rabbit” Avon High School | Avon, Connecticut“Sal the Salmon” Daniela Colina | Lima, Peru“Corey the Explorer” Caroline Goyer-Desrosiers | St. Eustache, Quebec, Canada“Flying Squirrel Ready for Its Take Off to Space!” Giulia Bona | Berlin, Germany“Art & the Giant” Tabitha Ramsey | Frederick, Maryland“Lunar Crust-acean” Gabriela Hadas | Plano, Texas“Celestial Griffin” Savon Blanchard | Pearland, Texas“Soluna Flier” Ayako Moriyama | Kyoto, Japan“MORU: A Cloud Aglow with Moonlight and Hope” Johanna Beck | McPherson, Kansas“Creation Mythos” Guillaume Truong | Toulouse, France“Space Mola-mola (aka Moon Fish) Plushie” Arianna Robins | Rockledge, Florida“Terra the Titanosaurus” Sandy Moya | Madrid, Colombia“MISI: Guardian of the Journey” Bekah Crowmer | Mooresville, Indiana“Mona the Moon Moth” Courtney John | Llanelli, Wales“Past, Present, Future” En marzo, la NASA anunció que buscaba propuestas de creadores de todo el mundo para el diseño de un indicador de gravedad cero que volaría a bordo de Artemis II, la primera misión tripulada de la campaña Artemis de la NASA. Se pidió a los creadores que presentaran ideas que representaran la importancia de Artemis, la misión, o la exploración y el descubrimiento, y que cumplieran con requisitos específicos de tamaño y materiales. La empresa de crowdsourcing (colaboración abierta) Freelancer sirvió como facilitadora del concurso en nombre de la NASA, a través del Laboratorio de Campeonatos de la NASA, el cual es gestionado por la Dirección de Misiones de Tecnología Espacial de la agencia.
Una vez que la tripulación haya seleccionado un diseño final, el Laboratorio de Mantas Térmicas de la NASA lo fabricará para el vuelo. El indicador estará amarrado dentro de Orion antes del lanzamiento.
La misión, que tendrá alrededor de 10 días de duración, es otro paso adelante hacia misiones en la superficie lunar y sirve como preparación para futuras misiones tripuladas a Marte de la agencia.
Mediante Artemis II, la NASA enviará astronautas a explorar la Luna para llevar a cabo descubrimientos científicos, obtener beneficios económicos y sentar las bases para las primeras misiones tripuladas a Marte.
View the full article
-
By NASA
5 min read
Close-Up Views of NASA’s DART Impact to Inform Planetary Defense
Photos taken by the Italian LICIACube, short for the LICIA Cubesat for Imaging of Asteroids. These offer the closest, most detailed observations of NASA’s DART (Double Asteroid Redirection Test) impact aftermath to date. The photo on the left was taken roughly 2 minutes and 40 seconds after impact, as the satellite flew past the Didymos system. The photo on the right was taken 20 seconds later, as LICIACube was leaving the scene. The larger body, near the top of each image is Didymos. The smaller body in the lower half of each image is Dimorphos, enveloped by the cloud of rocky debris created by DART’s impact. NASA/ASI/University of Maryland On Sept. 11, 2022, engineers at a flight control center in Turin, Italy, sent a radio signal into deep space. Its destination was NASA’s DART (Double Asteroid Redirection Test) spacecraft flying toward an asteroid more than 5 million miles away.
The message prompted the spacecraft to execute a series of pre-programmed commands that caused a small, shoebox-sized satellite contributed by the Italian Space Agency (ASI), called LICIACube, to detach from DART.
Fifteen days later, when DART’s journey ended in an intentional head-on collision with near-Earth asteroid Dimorphos, LICIACube flew past the asteroid to snap a series of photos, providing researchers with the only on-site observations of the world’s first demonstration of an asteroid deflection.
After analyzing LICIACube’s images, NASA and ASI scientists report on Aug. 21 in the Planetary Science Journal that an estimated 35.3 million pounds (16 million kilograms) of dust and rocks spewed from the asteroid as a result of the crash, refining previous estimates that were based on data from ground and space-based observations.
While the debris shed from the asteroid amounted to less than 0.5% of its total mass, it was still 30,000 times greater than the mass of the spacecraft. The impact of the debris on Dimorphos’ trajectory was dramatic: shortly after the collision, the DART team determined that the flying rubble gave Dimorphos a shove several times stronger than the hit from the spacecraft itself.
“The plume of material released from the asteroid was like a short burst from a rocket engine,” said Ramin Lolachi, a research scientist who led the study from NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The important takeaway from the DART mission is that a small, lightweight spacecraft can dramatically alter the path of an asteroid of similar size and composition to Dimorphos, which is a “rubble-pile” asteroid — or a loose, porous collection of rocky material bound together weakly by gravity.
“We expect that a lot of near-Earth asteroids have a similar structure to Dimorphos,” said Dave Glenar, a planetary scientist at the University of Maryland, Baltimore County, who participated in the study. “So, this extra push from the debris plume is critical to consider when building future spacecraft to deflect asteroids from Earth.”
The tail of material that formed behind Dimorphos was prominent almost 12 days after the DART impact, giving the asteroid a comet-like appearance, as seen in this image captured by NASA’s Hubble Space Telescope in October 2022. Hubble’s observations were made from roughly 6.8 million miles away. NASA, ESA, STScI, Jian-Yang Li (PSI); Image Processing: Joseph DePasquale DART’s Star Witness
NASA chose Dimorphos, which poses no threat to Earth, as the mission target due to its relationship with another, larger asteroid named Didymos. Dimorphos orbits Didymos in a binary asteroid system, much like the Moon orbits Earth. Critically, the pair’s position relative to Earth allowed astronomers to measure the duration of the moonlet’s orbit before and after the collision.
Ground and space-based observations revealed that DART shortened Dimorphos’ orbit by 33 minutes. But these long-range observations, made from 6.8 million miles (10.9 million kilometers) away, were too distant to support a detailed study of the impact debris. That was LICIACube’s job.
After DART’s impact, LICIACube had just 60 seconds to make its most critical observations. Barreling past the asteroid at 15,000 miles (21,140 kilometers) per hour, the spacecraft took a snapshot of the debris roughly once every three seconds. Its closest image was taken just 53 miles (85.3 km) from Dimorphos’ surface.
The short distance between LICIACube and Dimorphos provided a unique advantage, allowing the cubesat to capture detailed images of the dusty debris from multiple angles.
The research team studied a series of 18 LICIAcube images. The first images in the sequence showed LICIACube’s head-on approach. From this angle, the plume was brightly illuminated by direct sunlight. As the spacecraft glided past the asteroid, its camera pivoted to keep the plume in view.
This animated series of images was taken by a camera aboard LICIACube 2 to 3 minutes after DART crashed into Dimorphos. As LICIACube made its way past the binary pair of asteroids Didymos, the larger one on top, and Dimorphos, the object at the bottom. The satellite’s viewing angle changed rapidly during its flyby of Dimorphos, allowing scientists o get a comprehensive view of the impact plume from a series of angles. ASI/University of Maryland/Tony Farnham/Nathan Marder As LICIACube looked back at the asteroid, sunlight filtered through the dense cloud of debris, and the plume’s brightness faded. This suggested the plume was made of mostly large particles — about a millimeter or more across — which reflect less light than tiny dust grains.
Since the innermost parts of the plume were so thick with debris that they were completely opaque, the scientists used models to estimate the number of particles that were hidden from view. Data from other rubble-pile asteroids, including pieces of Bennu delivered to Earth in 2023 by NASA’s OSIRIS-REx spacecraft, and laboratory experiments helped refine the estimate.
“We estimated that this hidden material accounted for almost 45% of the plume’s total mass,” said Timothy Stubbs, a planetary scientist at NASA Goddard who was involved with the study.
While DART showed that a high-speed collision with a spacecraft can change an asteroid’s trajectory, Stubbs and his colleagues note that different asteroid types, such as those made of stronger, more tightly packed material, might respond differently to a DART-like impact. “Every time we interact with an asteroid, we find something that surprises us, so there’s a lot more work to do,” said Stubbs. “But DART is a big step forward for planetary defense.”
The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, managed the DART mission and operated the spacecraft for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office.
By Nathan Marder, nathan.marder@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Aug 21, 2025 Related Terms
DART (Double Asteroid Redirection Test) Explore More
2 min read NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission
Article
12 months ago
5 min read NASA’s DART Mission Sheds New Light on Target Binary Asteroid System
Article
1 year ago
3 min read NASA Selects Participating Scientists to Join ESA’s Hera Mission
Article
1 year ago
Keep Exploring Discover Related Topics
Double Asteroid Redirection Test (DART)
Asteroids, Comets & Meteors
Our Solar System
For Planetary Science Researchers
Resources specifically curated to help planetary science researchers, whether new to the field or seasoned professionals.
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Dwarf planet Ceres is shown in these enhanced-color renderings that use images from NASA’s Dawn mission. New thermal and chemicals models that rely on the mission’s data indicate Ceres may have long ago had conditions suitable for life.NASA/JPL-Caltech/UCLA/MPS/DLR/IDA The dwarf planet is cold now, but new research paints a picture of Ceres hosting a deep, long-lived energy source that may have maintained habitable conditions in the past.
New NASA research has found that Ceres may have had a lasting source of chemical energy: the right types of molecules needed to fuel some microbial metabolisms. Although there is no evidence that microorganisms ever existed on Ceres, the finding supports theories that this intriguing dwarf planet, which is the largest body in the main asteroid belt between Mars and Jupiter, may have once had conditions suitable to support single-celled lifeforms.
Science data from NASA’s Dawn mission, which ended in 2018, previously showed that the bright, reflective regions on Ceres’ surface are mostly made of salts left over from liquid that percolated up from underground. Later analysis in 2020 found that the source of this liquid was an enormous reservoir of brine, or salty water, below the surface. In other research, the Dawn mission also revealed evidence that Ceres has organic material in the form of carbon molecules — essential, though not sufficient on its own, to support microbial cells.
The presence of water and carbon molecules are two critical pieces of the habitability puzzle on Ceres. The new findings offer the third: a long-lasting source of chemical energy in Ceres’ ancient past that could have made it possible for microorganisms to survive. This result does not mean that Ceres had life, but rather, that there likely was “food” available should life have ever arisen on Ceres.
This illustration depicts the interior of dwarf planet Ceres, including the transfer of water and gases from the rocky core to a reservoir of salty water. Carbon dioxide and methane are among the molecules carrying chemical energy beneath Ceres’ surface.NASA/JPL-Caltech In the study, published in Science Advances on Aug. 20, the authors built thermal and chemical models mimicking the temperature and composition of Ceres’ interior over time. They found that 2.5 billion years or so ago, Ceres’ subsurface ocean may have had a steady supply of hot water containing dissolved gases traveling up from metamorphosed rocks in the rocky core. The heat came from the decay of radioactive elements within the dwarf planet’s rocky interior that occurred when Ceres was young — an internal process thought to be common in our solar system.
“On Earth, when hot water from deep underground mixes with the ocean, the result is often a buffet for microbes — a feast of chemical energy. So it could have big implications if we could determine whether Ceres’ ocean had an influx of hydrothermal fluid in the past,” said Sam Courville, lead author of the study. Now based at Arizona State University in Tempe, he led the research while working as an intern at NASA’s Jet Propulsion Laboratory in Southern California, which also managed the Dawn mission.
Catching Chill
The Ceres we know today is unlikely to be habitable. It is cooler, with more ice and less water than in the past. There is currently insufficient heat from radioactive decay within Ceres to keep the water from freezing, and what liquid remains has become a concentrated brine.
The period when Ceres would most likely have been habitable was between a half-billion and 2 billion years after it formed (or about 2.5 billion to 4 billion years ago), when its rocky core reached its peak temperature. That’s when warm fluids would have been introduced into Ceres’ underground water.
The dwarf planet also doesn’t have the benefit of present-day internal heating generated by the push and pull of orbiting a large planet, like Saturn’s moon Enceladus and Jupiter’s moon Europa do. So Ceres’ greatest potential for habitability-fueling energy was in the past.
This result has implications for water-rich objects throughout the outer solar system, too. Many of the other icy moons and dwarf planets that are of similar size to Ceres (about 585 miles, or 940 kilometers, in diameter) and don’t have significant internal heating from the gravitational pull of planets could have also had a period of habitability in their past.
More About Dawn
A division of Caltech in Pasadena, JPL managed Dawn’s mission for NASA’s Science Mission Directorate in Washington. Dawn was a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. JPL was responsible for overall Dawn mission science. Northrop Grumman in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute were international partners on the mission team.
For a complete list of mission participants, visit:
https://solarsystem.nasa.gov/missions/dawn/overview/
News Media Contacts
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
2025-108
Share
Details
Last Updated Aug 20, 2025 Related Terms
Dawn Asteroids Ceres Jet Propulsion Laboratory The Solar System Vesta Explore More
6 min read NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun
Editor’s Note: This article was updated Aug. 20, 2025, to correct the number of years of…
Article 5 hours ago 4 min read NASA’s Psyche Captures Images of Earth, Moon
Article 1 day ago 3 min read Summer Triangle Corner: Altair
Altair is the last stop on our trip around the Summer Triangle! The last star…
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.