Jump to content

NASA’s SpaceX 32nd Resupply Mission Launches New Research to Station


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA and SpaceX are launching the company’s 32nd commercial resupply services mission to the International Space Station later this month, bringing a host of new research to the orbiting laboratory. Aboard the SpaceX Dragon spacecraft are experiments focused on vision-based navigation, spacecraft air quality, materials for drug and product manufacturing, and advancing plant growth with less reliance on photosynthesis.

This and other research conducted aboard the space station advances future space exploration, including missions to the Moon and Mars, and provides many benefits to humanity.

Investigations traveling to the space station include:

Robotic spacecraft guidance

Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a vision-based sensor developed by NASA to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.

Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.

Two cube-shaped robots each about the size of a small suitcase, one green and one blue, float in the middle of a module on the space station. Below them are white storage bags and behind them a wall covered with equipment, laptops, cords, and wires. A black device mounted on the wall at the left of the image has four bright blue lights.
Two of the space station’s Astrobee robots are used to test a vision-based guidance system for Smartphone Video Guidance Sensor (SVGS)
NASA

Protection from particles

During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors in space to determine which is best suited to protect crew health and ensure mission success. The investigation also tests a device for distinguishing between smoke and dust. Aboard the space station, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.

Better materials, better drugs

The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.

Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.

The image shows stem cells embedded within a network of scaffolding material. The scaffold is densely populated with cells adhered throughout. 
Stem cells grown along the Janus base nanomaterials (JBNs) made aboard the International Space Station.
University of Connecticut

Next-generation pharmaceutical nanostructures

The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.

Helping plants grow

Rhodium USAFA NIGHT examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use. The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.

Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.

A tan box about the size of a small microwave sits on top of a silver metal tray. The box has stickers on the top that say, “DoD Space Test Program,” “United States Air Force Academy,” and “United States Space Force.” On its front are six numbered chambers holding vials filled with a clear liquid, and more labels below them, including one that says, “Rhodium Plant Life” and a barcode.
Hardware for the Rhodium Plant LIFE, which was the first in a series used to study how space affects plant growth.
NASA

Atomic clocks in space

An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.

An illustration of the space station fills the top two-thirds of this image, with a silver, cylindrical module in the middle. A large silver box is attached to the bottom of it. A blue, cloud-dappled Earth fills the right lower corner, with the blackness of space in the background.
An artist’s concept shows the Atomic Clock Ensemble in Space hardware mounted on the Earth-facing side of the space station’s exterior.
ESA

Download high-resolution photos and videos of the research mentioned in this article.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Christopher LC Clark The parachute of the Enhancing Parachutes by Instrumenting the Canopy, or EPIC, test experiment deploys following an air launch from an Alta X drone on June 4, 2025, at NASA’s Armstrong Flight Research Center in Edwards, California. NASA researchers are developing technology to make supersonic parachutes safer and more reliable for delivering instruments and payloads to Mars.
      The flight tests were a first step toward filling gaps in computer models to improve supersonic parachutes. This work could also open the door to future partnerships, including with the aerospace and auto racing industries.
      Image Credit: NASA/Christopher LC Clark
      View the full article
    • By Space Force
      The U.S. Space Force, in partnership with SpaceX, successfully launched the eighth mission of the X-37B Orbital Test Vehicle (OTV-8) on a Falcon 9 rocket from Kennedy Space Center Launch Complex 39A.

      View the full article
    • By NASA
      NASA’s SpaceX 33rd commercial resupply mission will launch on the company’s Dragon spacecraft on the SpaceX Falcon 9 rocket to deliver research and supplies to the International Space StationNASA NASA and SpaceX are targeting no earlier than 2:45 a.m. EDT on Sunday, Aug. 24, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station.
      Filled with more than 5,000 pounds of supplies, the SpaceX Dragon spacecraft, on the company’s Falcon 9 rocket, will lift off from Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Dragon will dock autonomously about 7:30 a.m. on Monday, Aug. 25, to the forward port of the space station’s Harmony module.
      NASA’s SpaceX 33rd commercial resupply mission will launch from Launch Complex 40 at Cape Canaveral Space Force Station in Florida.NASA This launch is the 33rd SpaceX commercial resupply services mission to the orbital laboratory for the agency, and the 13th SpaceX launch under the Commercial Resupply Services-2 contract. The first 20 launches were under the original resupply services contract.
      Watch agency launch and arrival coverage on NASA+, Netflix, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      NASA’s live launch coverage will begin at 2:25 a.m. on Aug 24. Dragon’s arrival coverage will begin at 6 a.m. on Aug. 25. For nearly 25 years, the International Space Station has provided research capabilities used by scientists from over 110 countries to conduct more than 4,000 groundbreaking experiments in microgravity. Research conducted aboard the space station advances Artemis missions to the Moon and human exploration of Mars, while providing multiple benefits to humanity.
      Arrival & Departure
      The SpaceX Dragon spacecraft will arrive at the space station and dock autonomously to the forward port of the station’s Harmony module at approximately 7:30 a.m. on Monday, Aug. 25. NASA astronauts Mike Fincke and Jonny Kim will monitor the spacecraft’s arrival. It will stay docked to the orbiting laboratory for about four months before splashing down and returning critical science and hardware to teams on Earth.
      NASA astronauts Mike Fincke and Jonny Kim will monitor the arrival of the SpaceX Dragon cargo spacecraft from the International Space Station.NASA Research Highlights
      Preventing bone loss in space
      Microgravity Associated Bone Loss-B (MABL-B) assesses the effects of microgravity on bone marrow stem cells and may provide a better understanding of the basic molecular mechanisms of bone loss that occurs during spaceflight and from normal aging on Earth.NASA A study of bone-forming stem cells in microgravity could provide insight into the basic mechanisms of the bone loss astronauts experience during long-duration space flight ahead of future exploration of the Moon and Mars.
      Researchers identified a protein in the body called IL-6 that can send signals to stem cells to promote either bone formation or bone loss. This work evaluates whether blocking IL-6 signals could reduce bone loss during spaceflight. Results could improve our understanding of bone loss on Earth due to aging or disease and lead to new prevention and treatment strategies.
      Printing parts, tools in space
      Printing parts, tools in space
      The objective of the Metal 3D printer aboard the International Space Station is to gain experience with operating and evaluating the manufacturing of spare parts in microgravity to support long duration space missions.NASA As mission duration and distance from Earth increase, resupply becomes harder. Additive manufacturing, or 3D printing, could be used to make parts and dedicated tools on demand, enhancing mission autonomy.
      Research aboard the space station has made strides in 3D printing with plastic, but it is not suitable for all uses. Investigations from ESA’s (European Space Agency) Metal 3D Printer builds on recent successful printing of the first metal parts in space.
      Bioprinting tissue in microgravity
      Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) is a biotechnology experiment studying bioprinted, or lab grown, liver tissues complete with blood vessels in space. The results could improve astronaut health on long missions and lead to new ways to treat patients on Earth.NASA Researchers plan to bioprint liver tissue containing blood vessels on the ground and examine how the tissue develops in microgravity. Results could help support the eventual production of entire functional organs for transplantation on Earth.
      A previous mission tested whether this bioprinted liver tissue survived and functioned in space. This experimental round could show whether microgravity improves the development of the bioprinted tissue.
      Biomanufacturing drug-delivery medical devices
      The InSPA-Auxilium Bioprinter will test 3D printing medical implant devices designed to deliver drugs and treat various health conditions such as nerve inuries. Printing on the International Space Station may produce higher-quality devices than on Earth.NASA Scientists are creating an implantable device in microgravity that could support nerve regrowth after injuries. The device is created through bioprinting, a type of 3D printing that uses living cells or proteins as raw materials.
      Traumatic injuries can create gaps between nerves, and existing treatments have a limited ability to restore nerve function and may result in impaired physical function. A bioprinted device to bridge nerve gaps could accelerate recovery and preserve function.
      Cargo Highlights
      NASA’s SpaceX 33rd commercial resupply mission will carry over 5,000 pounds of cargo to the International Space Station.NASA Hardware
      Launch:
      Reboost Kit – This kit will perform a reboost demonstration of the station to maintain its current altitude. The hardware, located in Dragon’s trunk, contains an independent propellant system, separate from the spacecraft’s main system, to fuel two Draco engines using existing hardware and propellant system design. The boost kit will demonstrate the capability to maintain the orbiting lab’s altitude starting in September with a series of burns planned periodically throughout the fall of 2025. During NASA’s SpaceX 31st commercial resupply services mission, the Dragon spacecraft first demonstrated these capabilities on Nov. 8, 2024. Poly Exercise Rope Kit – These exercise ropes distribute the desired exercise loads through a series of pulleys for the Advanced Restrictive Exercise Device. The ropes have a limited life cycle, and it will be necessary to replace them once they have reached their limit. Brine Filter – These filters remove solid particles from liquid in urine during processing as a part of the station’s water recovery system. Acoustic Monitor – A monitor that measures sound and records the data for download. This monitor will replace the sound level meter and the acoustic dosimeter currently aboard the orbiting laboratory. Multi-filtration Bed – This space unit will support the Water Processor Assembly and continue the International Space Station Program’s effort to replace a fleet of degraded units aboard the station to improve water quality through a single bed. Water Separator Orbital Unit – The unit draws air and condensate mixture from a condensing heat exchanger and separates the two components. The air is returned to the cabin air assembly outlet air-flow stream, and the water is delivered to the condensate bus. This unit launches to maintain in-orbit sparing while another is being returned for repair. Anomaly Gas Analyzer Top Assembly – This battery-powered device detects and monitors gases aboard the station, including oxygen, carbon dioxide, hydrogen chloride, hydrogen fluoride, ammonia, carbon monoxide, and hydrogen cyanide. It also measures cabin pressure, humidity, and temperature. It replaces the Compound Specific Analyzer Combustion Products as the primary tool for detecting airborne chemicals and conditions. Separator Pump (Water Recovery and Management) – This electrically-powered pump separates liquids and gases while rotating. It includes a scoop pump that moves the separated liquid into storage containers for use in other systems. The pump also contains sensor components and a filter to reduce electrical interference from the motor. Launching to maintain in-orbit sparing. Reducer Cylinder Assembly & Emergency Portable Breathing Apparatus – Together, this hardware provides 15 minutes of oxygen to a crew member in case of an emergency (smoke, fire, alarm). Two are launching to maintain a minimum in-orbit spare requirement.  Passive Separator Flight Experiment – This experiment will test a new method for separating urine and air using existing technology that combines a water-repellent urine hose with an airflow separator from the station’s existing Waste Hygiene Compartment. Improved Resupply Water Tanks – Two tanks, each holding approximately 160 pounds of potable water, to supplement the Urine Processing Assembly. NORS (Nitrogen/Oxygen Recharge System) Maintenance Tank/Recharge Tank Assembly, Nitrogen – The NORS maintenance kit comprises two assemblies: the NORS recharge tank assembly and the NORS vehicle interface assembly. The recharge tank assembly will be pressurized with nitrogen gas for launch. The vehicle interface assembly will protect the recharge tank assembly for launch and stowage aboard the space station. Launching to maintain reserve oxygen levels on station. Swab Kits – These quick-disconnect cleaning kits are designed and created to replace in-orbit inventory. Return:
      Oxygen Generation Assembly Pump – The assembly pump converts potable water from the water recovery system into oxygen and hydrogen. The oxygen is sent to the crew cabin, and the hydrogen is either vented or used to produce more water. The International Space Station has been using this process to produce oxygen and hydrogen for 15 years, and this unit will be retired upon its return to Earth. The flight support equipment within will be refurbished and used in a new pump launched aboard a future flight. Carbon Dioxide Monitoring Assembly – A carbon dioxide monitor that measures the gas using the infrared absorption sensor. It expired in July 2025 and will return for refurbishment. Meteoroid Debris Cover Center Section Assembly – This external multilayer insulation provides thermal and micro-meteoroid orbital debris protection on the node port. After it is removed and replaced with a new assembly launching on NASA’s Northrop Grumman 23rd commercial resupply services mission, this unit will return for repair or used for spare parts.   Multi-filtration Bed – This spare unit supports the Water Processor Assembly, which improves water quality aboard the International Space Station. Its return is part of an ongoing effort to replace a degraded fleet of in-orbit units. After its use, this multi-filtration bed will be refurbished for future re-flight. Separator Pump – This electrically powered pump separates liquids and gases while rotating. It includes a scoop pump that moves the separated liquid into storage containers for use in other systems. The pump also contains sensor components and a filter to reduce electrical interference from the motor. This unit is designed to run to failure, and after investigation and testing, it will be returned for repair and future flight. Rate Gyro Enclosure Assembly – The Rate Gyro Assembly determines the space station’s rate of angular motion. It is returning for repair and refurbishment and will be used as a spare. NORS (Nitrogen/Oxygen Recharge System) Maintenance Kit (Oxygen) – The NORS Maintenance Kit comprises two assemblies: the NORS Recharge Tank Assembly and the NORS Vehicle Interface Assembly. The recharge tank assembly will be pressurized with Nitrogen gas for launch. The vehicle interface assembly will protect the recharge tank assembly for launch and stowage aboard the space station. They are routinely returned for reuse and re-flight. The kit also includes a VIA bag (vehicle interface assembly) with foam, which is used as a cargo transfer bag for launch and return to protect the tank. Watch, Engage
      Watch agency launch and arrival coverage on NASA+, Netflix, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      NASA’s live launch coverage will begin at 2:25 a.m. on Aug 24. Dragon’s arrival coverage will begin at 6 a.m. on Aug. 25.
      Read more about how to watch and engage.

      View the full article
    • By NASA
      NASA's SpaceX 33rd Commercial Resupply Services Launch
    • By NASA
      From top left to right, NASA astronauts Victor Glover, Artemis II pilot; Reid Wiseman, Artemis II commander; CSA (Canadian Space Agency) astronaut Jeremy Hansen, Artemis II mission specialist, and NASA astronaut Christina Koch, Artemis II mission specialist, suit up and walk out of the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida on Aug. 11.Credit: NASA/Kim Shiflett Lee esta nota de prensa en español aquí.
      NASA is opening media accreditation for multi-day events to introduce America’s newest astronaut class and provide briefings for the Artemis II crewed test flight around the Moon. The activities will take place in September at the agency’s Johnson Space Center in Houston.
      After evaluating more than 8,000 applications, NASA will debut its 2025 class of astronaut candidates during a ceremony at 12:30 p.m. EDT on Monday, Sept. 22. Following the ceremony, the candidates will be available for media interviews.
      The astronaut selection event will stream live on NASA+, Netflix, Amazon Prime, NASA’s YouTube channel, and the agency’s X account.
      The selected candidates will undergo nearly two years of training before they graduate as flight-eligible astronauts for agency missions to low Earth orbit, the Moon, and ultimately, Mars.
      Next, NASA will host a series of media briefings on Tuesday, Sept. 23, and Wednesday, Sept. 24, to preview the upcoming Artemis II mission, slated for no later than April 2026. The test flight, a launch of the SLS (Space Launch System) rocket and Orion spacecraft, will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, along with CSA (Canadian Space Agency) astronaut Jeremy Hansen, on an approximately 10-day mission around the Moon.
      Artemis II will help confirm the systems and hardware needed for human deep space exploration. This mission is the first crewed flight under NASA’s Artemis campaign and is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send American astronauts to Mars.
      The Artemis II events briefings will stream live on the agency’s YouTube channel and X account. Learn how to watch NASA content through a variety of platforms.
      Following the briefings, NASA will host an Artemis II media day at NASA Johnson on Sept. 24, to showcase mission support facilities, trainers, and hardware for Artemis missions, as well as offer interview opportunities with leaders, flight directors, astronauts, scientists, and engineers.
      Media who wish to participate in person must contact the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov and indicate which events they plan to attend. Confirmed media will receive additional details about participating in these events. A copy of NASA’s media accreditation policy is available on the agency’s website. Media accreditation deadlines for the astronaut candidate selection and Artemis II events are as follows:
      U.S. media interested in attending in person must RSVP no later than 5 p.m., Wednesday, Sept. 17. International media without U.S. citizenship must RSVP no later than 5 p.m., Wednesday, Sept. 10. Media requesting in-person or virtual interviews with the astronaut candidates, Artemis experts, or the Artemis II crew must submit requests to the NASA Johnson newsroom by Wednesday, Sept. 17. In-person interview requests are subject to the credentialing deadlines noted above.
      Information for the astronaut candidate selection and Artemis II events, including briefing participants, is as follows (all times Eastern):
      Monday, Sept. 22
      12:30 p.m.: 2025 Astronaut Candidate Selection Ceremony
      Tuesday, Sept. 23
      11 a.m.: Artemis II Mission Overview Briefing  
      Lakiesha Hawkins, acting deputy associate administrator, Exploration Systems Development Mission Directorate, NASA Headquarters Charlie Blackwell-Thompson, Artemis launch director, NASA’s Kennedy Space Center in Florida Judd Frieling, lead Artemis II ascent flight director, NASA Johnson Jeff Radigan, lead Artemis II flight director, NASA Johnson Rick Henfling, lead Artemis II entry flight director, NASA Johnson Daniel Florez, test director, Exploration Ground Systems, NASA Kennedy 1 p.m.: Artemis II Science and Technology Briefing
      Matt Ramsey, Artemis II mission manager, NASA Headquarters Howard Hu, Orion Program manager, NASA Johnson Jacob Bleacher, manager, Science, Technology Utilization, and Integration, Exploration Systems Development Mission Directorate, NASA Headquarters Mark Clampin, acting deputy associate administrator, Science Mission Directorate, NASA Headquarters Media who wish to participate by phone must request dial-in information by 5 p.m., Sept. 22, by emailing NASA Johnson’s newsroom.
      Wednesday, Sept. 24
      10 a.m.: Artemis II Crew News Conference
      Reid Wiseman, commander Victor Glover, pilot Christina Koch, mission specialist Jeremy Hansen, mission specialist Media who wish to participate by phone must request dial-in information by 5 p.m., Sept. 23, by emailing NASA Johnson’s newsroom.
      Learn more about how NASA leads human spaceflight efforts at:
      https://www.nasa.gov/humans-in-space
      -end-
      Jimi Russell / Rachel Kraft
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov / rachel.h.kraft@nasa.gov
      Courtney Beasley / Chelsey Ballarte
      Johnson Space Center, Houston
      281-910-4989
      courtney.m.beasley@nasa.gov / chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Aug 20, 2025 LocationNASA Headquarters Related Terms
      Artemis Artemis 2 Candidate Astronauts Humans in Space Mars View the full article
  • Check out these Videos

×
×
  • Create New...