Members Can Post Anonymously On This Site
The forgotten past: Are we a civilization suffering from amnesia?
-
Similar Topics
-
By NASA
As Hubble marks three and a half decades of scientific breakthroughs and technical resilience, the “Hubble at 35 Years” symposium offers a platform to reflect on the mission’s historical, operational, and scientific legacy. Hubble’s trajectory—from early challenges to becoming a symbol of American scientific ingenuity—presents valuable lessons in innovation, collaboration, and crisis response. Bringing together scientists, engineers, and historians at NASA Headquarters ensures that this legacy informs current and future mission planning, including operations for the James Webb Space Telescope, Roman Space Telescope, and other next-generation observatories. The symposium not only honors Hubble’s transformative contributions but also reinforces NASA’s commitment to learning from the past to shape a more effective and ambitious future for space science.
Hubble at 35 Years
Lessons Learned in Scientific Discovery and NASA Flagship Mission Operations
October 16–17, 2025
James Webb Auditorium, NASA HQ, Washington, D.C.
The giant Hubble Space Telescope (HST) can be seen as it is suspended in space by Discovery’s Remote Manipulator System (RMS) following the deployment of part of its solar panels and antennae on April 25, 1990.NASA The story of the Hubble Space Telescope confirms its place as the most transformative and significant astronomical observatory in history. Once called “the eighth wonder of the world” by a former NASA administrator, Hubble’s development since its genesis in the early 1970s and its launch, repair, and ultimate impact since 1990 provide ample opportunity to apply insights from its legacy. Scientists and engineers associated with groundbreaking discoveries have always operated within contexts shaped by forces including the government, private industry, the military, and the public at large. The purpose of this symposium is to explore the insights from Hubble’s past and draw connections that can inform the development of mission work today and for the future.
Contact the Organizer Keep Exploring Discover More Topics From NASA
Hubble’s 35th Anniversary
Universe
Humans In Space
NASA History
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
Sols 4502-4504: Sneaking Past Devil’s Gate
NASA’s Mars rover Curiosity acquired this image of the terrain around it on April 3, 2025, showing a small ridgeline on the right side, “Devil’s Gate,” and the base of Texoli butte, visible on the left side of the image. Curiosity acquired the image using its Left Navigation Camera on Sol 4500, or Martian day 4,500 of the Mars Science Laboratory mission, at 23:08:35 UTC. NASA/JPL-Caltech Written by Michelle Minitti, Planetary Geologist at Framework
Earth planning date: Friday, April 4, 2025
We continue to make progress driving up Mount Sharp, each day gaining new perspectives on the spectacular, towering buttes surrounding our path. To get to the next canyon we can ascend, we have to swing around the north end of a small ridgeline, “Devil’s Gate,” which is on the right side of the image above.
The blocks scattered around the base of Devil’s Gate are ripe with interesting structures, which motivated the acquisition of an RMI mosaic across the ridge. Those blocks are also inconvenient for driving and parking the rover with all six wheels firmly on the ground, the latter of which is needed to be able to unstow the arm for APXS and MAHLI observations. Our last drive ended with our front wheels not quite on solid ground, so we had to forego arm work this weekend. But as you can imagine with the view around us, Devil’s Gate was not the only feature that the team was excited to image. ChemCam added a second RMI mosaic along the base of “Texoli” butte, which you can see the flank of on the left side of the image above. Mastcam planned a mosaic across an expanse of bedrock that looks like rolling waves frozen in place at “Maidenhair Falls.”
The rocks right in front of the rover were also wonderfully complex in their textures and structures. ChemCam targeted two different textures expressed in the workspace — one across fine layers at “Arroyo Burro” and one across rough, platy, and gray material at “Arroyo Conejo.” Mastcam documented the block containing both these targets with a stereo mosaic that will give us a three-dimensional view of its structures.
We planned a drive to get us further around the base of Devil’s Gate, after which we will acquire an autonomously-targeted ChemCam LIBS raster and early morning Navcam and Mastcam mosaics looking back on the path we have recently traveled. DAN is scheduled for about seven hours of data collecting across the plan, both during science blocks and our drive. The sky gets a lot of attention in this plan with suites of observations taken at two different times — near midday and early morning — to assess variability across the day. Each window of time had Navcam dust-devil and cloud movies, and measurements of the amount of dust in the atmosphere. The early morning block of observations also had multiple cloud movies cover the full sky. REMS and RAD have regular measurements across the sols.
See you Monday, when we are a bit farther past Devil’s Gate!
Share
Details
Last Updated Apr 07, 2025 Related Terms
Blogs Explore More
3 min read Sols 4500-4501: Bedrock With a Side of Sand
Article
1 hour ago
3 min read Sols 4498-4499: Flexing Our Arm Once Again
Article
4 days ago
2 min read Sols 4495-4497: Yawn, Perched, and Rollin’
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A new international study partially funded by NASA on how Mars got its iconic red color adds to evidence that Mars had a cool but wet and potentially habitable climate in its ancient past.
Mosaic of the Valles Marineris hemisphere of Mars projected into point perspective, a view similar to that which one would see from a spacecraft. The distance is 2500 kilometers from the surface of the planet, with the scale being .6km/pixel. The mosaic is composed of 102 Viking Orbiter images of Mars. The center of the scene (lat -8, long 78) shows the entire Valles Marineris canyon system, over 2000 kilometers long and up to 8 kilometers deep, extending form Noctis Labyrinthus, the arcuate system of graben to the west, to the chaotic terrain to the east. Many huge ancient river channels begin from the chaotic terrain from north-central canyons and run north. The three Tharsis volcanoes (dark red spots), each about 25 kilometers high, are visible to the west. South of Valles Marineris is very ancient terrain covered by many impact craters.NASA The current atmosphere of Mars is too cold and thin to support liquid water, an essential ingredient for life, on its surface for lengthy periods. However, various NASA and international missions have found evidence that water was abundant on the Martian surface billions of years ago during a more clement era, such as features that resemble dried-up rivers and lakes, and minerals that only form in the presence of liquid water.
Adding to this evidence, results from a study published February 25 in the journal Nature Communications suggest that the water-rich iron mineral ferrihydrite may be the main culprit behind Mars’ reddish dust. Martian dust is known to be a hodgepodge of different minerals, including iron oxides, and this new study suggests one of those iron oxides, ferrihydrite, is the reason for the planet’s color.
The finding offers a tantalizing clue to Mars’ wetter and potentially more habitable past because ferrihydrite forms in the presence of cool water, and at lower temperatures than other previously considered minerals, like hematite. This suggests that Mars may have had an environment capable of sustaining liquid water before it transitioned from a wet to a dry environment billions of years ago.
“The fundamental question of why Mars is red has been considered for hundreds if not for thousands of years,” said lead author Adam Valantinas, a postdoctoral fellow at Brown University, Providence, Rhode Island, who started the work as a Ph.D. student at the University of Bern, Switzerland. “From our analysis, we believe ferrihydrite is everywhere in the dust and also probably in the rock formations, as well. We’re not the first to consider ferrihydrite as the reason for why Mars is red, but we can now better test this using observational data and novel laboratory methods to essentially make a Martian dust in the lab.”
Laboratory sample showing simulated Martian dust. The ochre color is characteristic of iron-rich ferrihydrite, a mineral that provides crucial insights into ancient water activity and environmental conditions on Mars. The fine-powder mixture consists of ferrihydrite and ground basalt with particles less than one micrometer in size (1/100th diameter of a human hair) (Sample scale: 1 inch across).Adam Valantinas “These new findings point to a potentially habitable past for Mars and highlight the value of coordinated research between NASA and its international partners when exploring fundamental questions about our solar system and the future of space exploration,” said Geronimo Villanueva, the Associate Director for Strategic Science of the Solar System Exploration Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-author of this study.
The researchers analyzed data from multiple Mars missions, combining orbital observations from instruments on NASA’s Mars Reconnaissance Orbiter, ESA’s (the European Space Agency) Mars Express and Trace Gas Orbiter with ground-level measurements from NASA rovers like Curiosity, Pathfinder, and Opportunity. Instruments on the orbiters and rovers provided detailed spectral data of the planet’s dusty surface. These findings were then compared to laboratory experiments, where the team tested how light interacts with ferrihydrite particles and other minerals under simulated Martian conditions.
“What we want to understand is the ancient Martian climate, the chemical processes on Mars — not only ancient — but also present,” said Valantinas. “Then there’s the habitability question: Was there ever life? To understand that, you need to understand the conditions that were present during the time of this mineral’s formation. What we know from this study is the evidence points to ferrihydrite forming and for that to happen there must have been conditions where oxygen from air or other sources and water can react with iron. Those conditions were very different from today’s dry, cold environment. As Martian winds spread this dust everywhere, it created the planet’s iconic red appearance.”
Whether the team’s proposed formation model is correct could be definitively tested after samples from Mars are delivered to Earth for analysis.
“The study really is a door-opening opportunity,” said Jack Mustard of Brown University, a senior author on the study. “It gives us a better chance to apply principles of mineral formation and conditions to tap back in time. What’s even more important though is the return of the samples from Mars that are being collected right now by the Perseverance rover. When we get those back, we can actually check and see if this is right.”
Part of the spectral measurements were performed at NASA’s Reflectance Experiment Laboratory (RELAB) at Brown University. RELAB is supported by NASA’s Planetary Science Enabling Facilities program, part of the Planetary Science Division of NASA’s Science Mission Directorate at NASA Headquarters in Washington.
By William Steigerwald
NASA Goddard Space Flight Center, Greenbelt, Maryland
Share
Details
Last Updated Feb 24, 2025 EditorWilliam SteigerwaldContactLonnie Shekhtmanlonnie.shekhtman@nasa.govLocationNASA Goddard Space Flight Center Related Terms
The Solar System Mars Explore More
5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
NASA and its international partners are making progress on Gateway – the lunar space station…
Article 4 days ago 6 min read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind
Earth is immersed in material streaming from the Sun. This stream, called the solar wind,…
Article 4 days ago 2 min read How Long Does it Take to Get to the Moon… Mars… Jupiter? We Asked a NASA Expert: Episode 51
So how long does it take to get from Earth to the Moon, to Mars…
Article 6 days ago View the full article
-
By NASA
October 1, 2022 – September 30, 2023
This eighth annual report provides an overall highlight of research results published from October 1, 2022 to September 30, 2023 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2022 – September 30, 2023) (PDF, 19.6 MB).
List of Archived ISS Publications October 1, 2022 – September 30, 2023. (PDF, 1.2 MB)
October 1, 2021 – September 30, 2022
This seventh annual report provides an overall highlight of research results published from October 1, 2021 to September 30, 2022 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2021 – September 30, 2022) (PDF, 7.0 MB).
List of Archived ISS Publications October 1, 2021 – September 30, 2022. (PDF, 1.2 MB)
October 1, 2020 – October 1, 2021
This sixth annual report provides an overall highlight of research results published from October 1, 2020 to October 1, 2021 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2020 – October 1, 2021) (PDF, 7.0 MB)
October 1, 2019 – October 1, 2020
This fifth annual report provides an overall highlight of research results published from October 1, 2019 to October 1, 2020 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2019 – October 1, 2020) (PDF, 7.0 MB)
October 1, 2018 – October 1, 2019
This fourth annual report provides an overall highlight of research results published from October 1, 2018 to October 1, 2019 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2018 – October 1, 2019) (PDF, 3.0 MB)
October 1, 2017 – October 1, 2018
This third annual report provides an overall highlight of research results published from October 1, 2017 to October 1, 2018 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2017 – October 1, 2018) (PDF, 5.8MB)
October 1, 2016 – October 1, 2017
This second annual report provides an overall highlight of research results published from October 1, 2016 to October 1, 2017 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2016 – October 1, 2017) (PDF, 5MB)
October 1, 2015 – October 1, 2016
This first annual report provides an overall highlight of research results published from October 1, 2015 to October 1, 2016 from investigations operated on the space station. Annual Highlights of Results from the International Space Station (October 1, 2015 – October 1, 2016) (PDF, 2.6MB)
Keep Exploring Discover More Topics
Space Station Research Results
Space Station Research and Technology
ISS National Laboratory
Opportunities and Information for Researchers
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.