Jump to content

Recommended Posts

  • Publishers
Posted

3 min read

NASA’s Juno Back to Normal Operations After Entering Safe Mode

This illustration depicts NASA's Juno spacecraft in orbit above Jupiter's Great Red Spot.
NASA’s Juno flies above Jupiter’s Great Red Spot in this artist’s concept.
NASA/JPL-Caltech

The spacecraft was making its 71st close approach to Jupiter when it unexpectedly entered into a precautionary status.

Data received from NASA’s Juno mission indicates the solar-powered spacecraft went into safe mode twice on April 4 while the spacecraft was flying by Jupiter. Safe mode is a precautionary status that a spacecraft enters when it detects an anomaly. Nonessential functions are suspended, and the spacecraft focuses on essential tasks like communication and power management. Upon entering safe mode, Juno’s science instruments were powered down, as designed, for the remainder of the flyby.

The mission operations team has reestablished high-rate data transmission with Juno, and the spacecraft is currently conducting flight software diagnostics.The team will work in the ensuing days to transmit the engineering and science data collected before and after the safe-mode events to Earth.

Juno first entered safe mode at 5:17 a.m. EDT, about an hour before its 71st close passage of Jupiter — called perijove. It went into safe mode again 45 minutes after perijove. During both safe-mode events, the spacecraft performed exactly as designed, rebooting its computer, turning off nonessential functions, and pointing its antenna toward Earth for communication.

Of all the planets in our solar system, Jupiter is home to the most hostile environment, with the radiation belts closest to the planet being the most intense. Early indications suggest the two Perijove 71 safe-mode events occurred as the spacecraft flew through these belts. To block high-energy particles from impacting sensitive electronics and mitigate the harmful effects of the radiation, Juno features a titanium radiation vault.

Including the Perijove 71 events, Juno has unexpectedly entered spacecraft-induced safe mode four times since arriving at Jupiter in July 2016: first, in 2016 during its second orbit, then in 2022 during its 39th orbit. In all four cases, the spacecraft performed as expected and recovered full capability.

Juno’s next perijove will occur on May 7 and include a flyby of the Jovian moon Io at a distance of about 55,300 miles (89,000 kilometers).

More About Juno

NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.

More information about Juno is available at:

https://www.nasa.gov/juno

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org

2025-049

Share

Details

Last Updated
Apr 09, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] has decided to retire on April 30, 2025, following 42 years of service to NASA – see Photo 1. Most recently, Kaye served as associate director for research of the Earth Science Division (ESD) within NASA’s Science Mission Directorate (SMD). In this position, he was responsible for the research and data analysis programs for Earth System Science that addressed the broad spectrum of scientific disciplines from the stratopause to the poles to the oceans.
      Photo 1. Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] retired from NASA on April 30, 2025, after a 42-year career. Photo credit: Public Domain A New York native, Kaye’s interest in space was piqued as a child watching early NASA manned space launches on television. He would often write to NASA to get pictures of the astronauts. In high school, he started an after school astronomy club. Despite a youthful interest in Earth science, as he explained in a 2014 “Maniac Talk” at NASA’s Goddard Space Flight Center, Kaye pursued a slightly different academic path. He obtained a Bachelor’s of Science in chemistry from Adelphi University in 1976 and a Ph.D. in theoretical physical chemistry at the California Institute of Technology in 1982. For his graduate studies, he focused on the quantum mechanics of chemical reactions with an aim toward being able to understand and calculate the activity.
      Following graduate school, Kaye secured a post-doctoral position at the U.S. Naval Research Laboratory, where he studied the chemistry of Earth’s atmosphere with a focus on stratospheric ozone. It was while working in a group of meteorologists at NASA’s Goddard Space Flight Center that Kaye returned to his roots and refocused his scientific energy on studying Earth.
      “NASA had a mandate to study stratospheric ozone,” Kaye said in an interview in 2009. “I got involved in looking at satellite observations and especially trying to interpret satellite observations of stratospheric composition and building models to simulate things, to look both ways, to use the models and use the data.”
      Kaye has held numerous science and leadership positions at NASA. He began his career at GSFC as a researcher for the Stratospheric General Circulation and Chemistry Modeling Project (SGCCP) from 1983–1990 working on stratospheric modeling.  In this role, he also worked on an Earth Observing System Interdisciplinary proposal.  His first role at NASA HQ was managing  as program scientist for the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), as well as numerous other missions. In this role, he was a project scientist for the Atmospheric Laboratory for Applications and Science (ATLAS) series of Shuttle missions. While managing ATLAS, Kaye oversaw the science carried out by a dozen instruments from several different countries. He also managed several other Earth Science missions during this time. See the link to Kaye’s “Maniac Talk.”
      Kaye entered the Senior Executive Service in 1999, where he continued to contribute to the agency by managing NASA’s Earth Science Research Program. In addition, Kaye has held temporary acting positions as deputy director of ESD and deputy chief scientist for Earth Science within SMD. Throughout his career he has focused on helping early-career investigators secure their first awards to establish their career path—see Photo 2.
      Photo 2. Throughout his career, Jack Kaye has been an advocate for young scientists, helping them get established in their careers. Here, Kaye speaks with the Climate Change Research Initiative cohort at the Mary W. Jackson NASA Headquarters building in Washington, DC on August 7, 2024. The Earth Science Division’s Early Career Research Program’s Climate Change Research Initiative is a year-long STEM engagement and experiential learning opportunity for educators and students from high school to graduate level. Photo Credit: NASA/Joel Kowsky On numerous occasions, Kaye spoke to different groups emphasizing the agency’s unique role in both developing and utilizing cutting-edge technology, especially remote observations of Earth with different satellite platforms – see Photo 3. With the launch of five new NASA Earth science campaigns in 2020, Kaye stated, “These innovative investigations tackle difficult scientific questions that require detailed, targeted field observations combined with data collected by our fleet of Earth-observing satellites.”
      Photo 3. Jack Kaye hands out eclipse posters and other outreach materials to attendees at Eclipse Fest 2024. Photo credit: GRC https://science.nasa.gov/science-research/earth-science/looking-back-on-looking-up-the-2024-total-solar-eclipse/ Kaye has also represented NASA in interagency and international activities and has been an active participant in the U.S. Global Change Research Program (USGCRP), where he has served for many years as NASA principal of the Subcommittee on Global Change Research. He served as NASA’s representative to the Subcommittee on Ocean Science and Technology and chaired the World Meteorological Organization Expert Team on Satellite Systems. Kaye was named an honorary member of the Asia Oceania Geoscience Society in 2015. He previously completed a six-year term as a member of the Steering Committee for the Global Climate Observing System and currently serves an ex officio member of the National Research Council’s Roundtable on Science and Technology for Sustainability and the Chemical Sciences Roundtable, as well as a member of the Roundtable on Global Science Diplomacy.
      NASA has honored Kaye with numerous awards, including the Distinguished Service Medal in 2022 and the Meritorious Executive in the Senior Executive Service in 2004, 2010, and 2021. In 2024 he was awarded the NASA-USGS Pecora Individual Award honoring excellence in Earth Observation. He was named a Fellow by the American Meteorological Society in 2010 and by the American Association of the Advancement of Science (AAAS) in 2014. Kaye was elected to serve as an office of the Atmospheric and Hydrospheric Science section of the AAAS (2015–2018). AGU has recognized him on two occasions with a Citation for Excellence in Refereeing.
      Over the course of his career Kaye has published more than 50 papers, contributed to numerous reports, books, and encyclopedias, and edited the book Isotope Effects in Gas-Phase Chemistry for the American Chemical Society. In addition, he has attended the Leadership for Democratic Society program at the Federal Executive Institute and the Harvard Senior Managers in Government Program at the John F. Kennedy School of Government at Harvard University.
      “The vantage point of space provides a way to look at the Earth globally, with the ability to observe Earth’s interacting components of air, water, land and ice, and both naturally occurring and human-induced processes,” Kaye said in a November 2024 article published by Penn State University. “It lets us look at variability on a broad range of spatial and temporal scales and given the decades of accomplishments, has allowed us to characterize and document Earth system variability on time scales from minutes to decades.”
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sol 4553: Back to the Boxwork!
      NASA’s Mars rover Curiosity acquired this image of its workspace in the “boxwork” terrain area, showing resistant, ridge-like features where it will investigate the targets dubbed “Sisquoc River” and “Palo Verde Mountains.” Curiosity acquired the image using its Left Navigation Camera on May 27, 2025 — Sol 4552, or Martian day 4,552 of the Mars Science Laboratory mission — at 08:38:12 UTC. NASA/JPL-Caltech Written by Lucy Thompson, Planetary Geologist at University of New Brunswick
      Earth planning date: Tuesday, May 27, 2005
      We return to planning today after a successful long weekend and about 42 meters of drive distance (about 138 feet). We planned four sols of activities on Friday to keep Curiosity busy, while the U.S.-based science team and engineers took time off yesterday for the Memorial Day holiday. As we got to admire the new workspace and drive direction view in front of the rover this morning, I realized that we have now driven about 35 kilometers (about 22 miles) and climbed more than 850 meters (2,789 feet) in elevation since landing nearly 13 years ago, and we continue to do exciting science on Mars, having recently driven onto new terrain. 
      The so-called boxwork structures are a series of resistant ridges observed both from orbit and in long-distance rover imaging (see Ashley’s blog here). Not only are the ridges of interest (do they indicate enhanced fluid-flow and cementation?), but the outcrop expression in general changed after we drove over a shallow trough onto the rocks that host the ridges.
      This plan will continue characterization of the interesting boxwork terrain. We had an example of a more resistant, ridge-like feature in our workspace today (see accompanying image). The composition of the ridge will be investigated using ChemCam (target “Sisquoc River”) and APXS (target “Palo Verde Mountains”), with accompanying Mastcam and MAHLI images. We will also acquire Mastcam imaging of a trough-like feature surrounding a bedrock slab, as part of our ongoing documentation of such structures, as well as of an apparent resistant boxwork ridge in the distance (“Lake Cachuma”). And a first for our mission, we are planning the longest-distance ChemCam remote imaging mosaic that we will have acquired — 91 kilometers (almost 57 miles) away! The intent is to compare the long-distance view from the ground with HiRISE orbital images in an attempt to create a 3D view. We also managed to squeeze in a Navcam large dust-devil survey before the planned 24-meter drive (about 79 feet). Once we arrive at our new location, MARDI will take an image of the terrain beneath the rover.
      The plan is rounded out with the standard REMS, DAN and RAD activities.
      Share








      Details
      Last Updated May 29, 2025 Related Terms
      Blogs Explore More
      3 min read A Dust Devil Photobombs Perseverance!


      Article


      42 minutes ago
      4 min read Sols 4549-4552: Keeping Busy Over the Long Weekend


      Article


      2 days ago
      2 min read Sols 4547-4548: Taking in the View After a Long Drive


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Space Force
      Chief of Space Operations Gen. Chance Saltzman visited Space Systems Command at Los Angeles Air Force Base May 22, engaging more than 500 Guardian acquirers to discuss their outsized impact on missions across the Space Force and Department of Defense.

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4547-4548: Taking in the View After a Long Drive
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 21, 2025 — Sol 4546, or Martian day 4,546 of the Mars Science Laboratory mission — at 05:05:33 UTC. NASA/JPL-Caltech Written by Alex Innanen, Atmospheric Scientist at York University
      Earth planning date: Wednesday, May 21, 2025
      Monday’s single-sol plan included a marathon 45-meter drive (about 148 feet), which put us in position for two full sols of imaging. This means both sols have what we call “targeted” science blocks, in which we have images of the workspace down from the last plan and can carefully choose what we want to take a closer look at. This always means a lot of good discussion amongst the geology and mineralogy theme group (GEO) about what deserves this closer look. As an outsider on the environmental theme group (ENV), I don’t always grasp the complexities of these discussions, but it’s always interesting to see what GEO is up to and to learn new things about the geology of Mount Sharp.
      GEO ended up picking “Big Bear Lake” as our contact science target, which is getting its typical treatment from APXS and MAHLI, as well as a LIBS observation from ChemCam. Aside from that there was plenty of room for remote sensing. ChemCam is also taking a LIBS observation of “Volcan Mountains” and a long-distance mosaic of the Texoli butte. Mastcam is also taking mosaics of a nearby trough, as well as two depressions known as “Sulphur Spring,” a more distant boxwork structure, and the very distant Mishe Mokwa butte.
      All of ENV’s activities are remote sensing, and we managed to squeeze in a few of those too. We have a couple dust monitoring observations, looking for dust devils and checking the amount of dust in the atmosphere. And since we’re still in the cloudy season we always try to make room for cloud observations. Today that meant a suraphorizon movie looking for clouds just above the horizon to the south, and a phase function sky survey, which captures clouds all around the rover, to try to understand how these clouds scatter sunlight.
      Share








      Details
      Last Updated May 22, 2025 Related Terms
      Blogs Explore More
      2 min read Sol 4546: Martian Jenga


      Article


      3 hours ago
      5 min read Sols 4543-4545: Leaving the Ridge for the Ridges


      Article


      2 days ago
      3 min read Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure?


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Space Force
      Remarks by Chief of Space Operations Gen B. Chance Saltzman at the USGIF GEOINT Symposium in St. Louis May 21, 2025.
      View the full article
  • Check out these Videos

×
×
  • Create New...