Members Can Post Anonymously On This Site
Martian rock on the move
-
Similar Topics
-
By NASA
The next era of lunar exploration demands a new kind of wheel – one that can sprint across razor-sharp regolith, shrug off extremely cold nights, and keep a rover rolling day after lunar day. The Rock and Roll with NASA Challenge seeks that breakthrough. If you can imagine a lightweight, compliant wheel that stays tough at higher speeds while carrying lots of cargo, your ideas could set the pace for surface missions to follow. For this phased Challenge, Phase 1 rewards the best concepts and analyses, Phase 2 funds prototypes, and Phase 3 puts the best wheels through a live obstacle course simulating the lunar terrain. Along the way, you’ll receive feedback from NASA mobility engineers and the chance to see your hardware pushed to its limits. In Phase 3, to prove concepts, NASA is using MicroChariot, a nimble, 45 kg test rover that will test the best designs from Phase 1 & Phase 2 at the Johnson Space Center Rockyard in Houston, Texas. Whether you’re a student team, a garage inventor, or a seasoned aerospace firm, this is your opportunity to rewrite the playbook of planetary mobility and leave tread marks on the future of exploration. Follow the challenge, assemble your crew, and roll out a solution that takes humanity back to the Moon.
Award: $155,000 in total prizes
Open Date: Phase 1 – August 28, 2025; Phase 2 – January 2026; Phase 3 – May 2026
Close Date: Phase 1 – November 4, 2025; Phase 2 – April 2026; Phase 3 – June 2026
For more information, visit: https://www.herox.com/NASARockandRoll
View the full article
-
By European Space Agency
In its latest postcard from Mars, the European Space Agency’s Mars Express returns to Acheron Fossae: a dramatic network of chasms carved into the surface of the Red Planet.
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home NASA’s Mars rover Curiosity acquired this image, looking south across the large boxwork structures, using its Left Navigation Camera on July 17, 2025. A series of ridges and hollows forms the dramatic topography in the foreground, while the distant buttes expose additional sedimentary structures. Curiosity acquired this image on Sol 4602, or Martian day 4,602 of the Mars Science Laboratory mission, at 17:49:18 UTC. NASA/JPL-Caltech Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center
Earth planning date: Friday, July 18, 2025
Curiosity has started to investigate the main exposure of the boxwork structures! What was once a distant target is now on our doorstep, and Curiosity is beginning to explore the ridges and hollows that make up this terrain, to better understand their chemistry, morphology, and sedimentary structures.
I was on shift as Long Term Planner during this three-sol weekend plan, and the team put together a very full set of activities to thoroughly investigate this site — from the sky to the sand. The plan starts with Navcam and Mastcam observations to assess the amount of dust in the atmosphere, followed by a large Mastcam mosaic to characterize the resistant ridge on which the rover is parked. ChemCam will also acquire a LIBS observation on a target named “Vicuna” to assess the chemistry of a well-exposed vein. The team chose this parking location to characterize the chemistry and textures of this topographic ridge (to compare with topographic lows), so the next part of the plan involves contact science using APXS and MAHLI to look at different parts of the nodular bedrock in our workspace, at targets named “Totoral” and “Sillar.” There’s also a MAHLI observation of the same vein that ChemCam targeted.
The second sol involves more Mastcam imaging to look at different parts of this prominent ridge, along with a ChemCam LIBS observation on top of the ridge, and a ChemCam RMI mosaic to document the sedimentary structures in a distant boxwork feature. Navcam will also be used to look for dust devils. Then Curiosity will take a short drive of about 5 meters (about 16 feet) to explore the adjacent hollow (seen as the low point in the foreground of the above Navcam image). After the drive we’ll take more images for context, and to prepare for targeting in Monday’s plan.
After all of this work it’s time to pause and take a deep breath… of Martian atmosphere. The weekend plan involves an exciting campaign to look for variations in atmospheric chemistry between night and day. So Curiosity will take an overnight APXS atmospheric observation at the same time that two instruments within SAM assess its chemical and isotopic abundance.
On the third sol Curiosity will acquire a ChemCam passive sky observation, leading to a great set of atmospheric data. These measurements will be compared to even more atmospheric activities in Monday’s plan to get the full picture. As you can imagine, this plan requires a lot of power, but it’s worth it for all of the exciting science that we can accomplish here.
The road ahead has many highs and lows (literally), but I can’t wait to see what Curiosity will accomplish. The distant buttes remind us that there’s so much more to explore, and I look forward to continuing to see where Curiosity will take us.
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Explore More
2 min read Curiosity Blog, Sols 4602-4603: On Top of the Ridge
Article
4 days ago
2 min read Curiosity Blog, Sols 4600-4601: Up and Over the Sand Covered Ramp
Article
6 days ago
2 min read Curiosity Blog, Sols 4597-4599: Wide Open Spaces
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars Resources
Explore this page for a curated collection of Mars resources.
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
NASA/Carla Thomas NASA’s X-59 quiet supersonic research aircraft completed its first low-speed taxi test at U.S. Air Force Plant 42 in Palmdale, California, on July 10, 2025. This marked the first time the one-of-a-kind experimental aircraft has ever moved under its own power.
During the test, engineers and flight crews monitored the X-59 as it moved across the runway, working to validate critical systems like steering and braking. The taxiing represents the start of the X-59’s final series of ground tests before first flight.
The X-59 is the centerpiece of NASA’s Quesst mission, which aims to demonstrate quiet supersonic flight by reducing the loud sonic boom to a quieter “thump.”
Image Credit: NASA/Carla Thomas
View the full article
-
By European Space Agency
The most complex parachute system to ever deploy on Mars has successfully slowed down an ExoMars mock-up landing platform for a safe touchdown on Earth.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.