Jump to content

Recommended Posts

  • Publishers
Posted

After months of groundbreaking research, exploration, and teamwork aboard the International Space Station, NASA’s SpaceX Crew-9 has returned to Earth.  

NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, as well as Roscosmos cosmonaut Aleksandr Gorbunov, splashed down safely on March 18, 2025, as a pod of dolphins circled the Dragon spacecraft near Tallahassee, Florida. 

Four large white and red parachutes are fully deployed above a SpaceX Dragon spacecraft splashing into the water.
NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov aboard the SpaceX Dragon spacecraft in the water off the coast of Tallahassee, Florida, March 18, 2025.
NASA/Keegan Barber

Williams and Wilmore made history as the first humans to fly aboard Boeing’s Starliner spacecraft during NASA’s Boeing Crew Flight Test (CFT). Launched June 5, 2024, aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Space Force Station, the CFT mission was Boeing’s first crewed flight.  

Hague and Gorbunov launched to the space station on Sept. 28, 2024, aboard a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. 

Four astronauts in blue, green, and black shirts float in the space station, smiling for the camera.
NASA’s SpaceX Crew-9 members pose together for a portrait inside the International Space Station’s Unity module. From left, are NASA astronaut Suni Williams, Roscosmos cosmonaut Aleksandr Gorbunov, and NASA astronauts Nick Hague and Butch Wilmore.
NASA

During their long-duration mission, the American crew members conducted more than 150 unique experiments and logged over 900 hours of research aboard the orbiting laboratory.  

Their work included studying plant growth and development, testing stem cell technology for patient care on Earth, and examining how spaceflight affects materials—insights vital for future deep space missions.  

The crew kicked off 2025 with two spacewalks that included removing an antenna assembly from the station’s truss, collecting microbial samples from the orbital outpost’s exterior for analysis by Johnson’s Astromaterials Research and Exploration Science division, installing patches to cover damaged areas of light filters on an X-ray telescope, and more. 

Williams now holds the record for the most cumulative spacewalking time by a woman — 62 hours and 6 minutes — placing her fourth among the most experienced spacewalkers in history. 

While in orbit, the crew also engaged the next generation through 30 ham radio events with students around the world and supported a student-led genetic experiment. 

As part of the CFT, Williams and Wilmore commanded Starliner during in-flight testing and were the first to see the spacecraft integrated in simulations and operate it hands-on in space, evaluating systems like maneuvering, docking, and emergency protocols. 

“We’ve learned a lot about systems integrated testing that will pay benefits going forward and lay the groundwork for future missions,” said Wilmore.  

Two people in blue spacesuits participate in a training simulation inside of a spacecraft.
Suni Williams and Butch Wilmore participate in an emergency operations simulation in the Boeing Starliner simulator at Johnson Space Center in Houston.
NASA/Robert Markowitz 

Following the test flight, NASA and Boeing are continuing work toward crew certification of the company’s CST-100 Starliner system. Joint teams are addressing in-flight anomalies and preparing for propulsion system testing ahead of the next mission. 

Despite the unexpected challenges, including technical issues with the Starliner spacecraft that extended their mission, both Wilmore and Williams said they would do it all over again. Wilmore emphasized his gratitude in being part of testing Starliner’s capabilities, stating, “I’d get on it in a heartbeat.”  

After returning to Earth, the crew received a warm welcome from family, colleagues, and fellow astronauts at Johnson Space Center’s Ellington Field. They were greeted by Johnson Acting Director Steve Koerner, who applauded their dedication and resilience. 

NASA astronaut Suni Williams returns to Johnson Space Center's Ellington Field in Houston after completing a long-duration science mission aboard the International Space Station and is greeted by Steve Koerner, Johnson's acting center director. After undocking from the orbiting laboratory, NASA’s SpaceX Crew-9 splashed down at 5:57 p.m. EDT on Tuesday, March 18, in the Gulf of America near Tallahassee, Florida.
Suni Williams is greeted by Johnson Acting Director Steve Koerner at Ellington Field in Houston after completing a long-duration science mission aboard the International Space Station.
NASA/Robert Markowitz

Williams shared a heartfelt embrace with astronaut Zena Cardman, thanking her for “taking one for the team.” Cardman had originally been assigned to Crew-9, but in August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams into Expedition 71/72 for a return on Crew-9. This adjustment meant Cardman and astronaut Stephanie Wilson would no longer fly the mission—a decision that underscored the flexibility and teamwork essential to human spaceflight. 

Cardman is now assigned as commander of NASA’s SpaceX Crew-11 mission, set to launch in the coming months to the International Space Station for a long-duration science expedition. 

NASA astronaut Butch Wilmore receives a warm welcome at Johnson Space Center's Ellington Field in Houston from NASA astronauts Reid Wiseman and Woody Hoburg after completing a long-duration science mission aboard the International Space Station. After undocking from the orbiting laboratory, NASA’s SpaceX Crew-9 splashed down at 5:57 p.m. EDT on Tuesday, March 18, in the Gulf of America near Tallahassee, Florida.
Butch Wilmore receives a warm welcome from NASA astronauts Reid Wiseman and Woody Hoburg at Ellington Field.
NASA/Robert Markowitz

Williams and Wilmore each brought decades of experience to the mission. Wilmore, a retired U.S. Navy captain and veteran fighter pilot, has logged 464 days in space over three flights. Outside of NASA, he serves as a pastor, leads Bible studies, and participates in mission trips across Central and South America. A skilled craftsman, he also builds furniture and other pieces for his local church. 

Growing up in Tennessee, Wilmore says his faith continues to guide him, especially when navigating the uncertainties of flight. 

NASA astronaut and Expedition 72 Flight Engineer Butch Wilmore works inside the International Space Station's Columbus laboratory module to begin installing the European Enhanced Exploration Exercise Device. The futuristic exercise gear will be tested by the station crew using its advanced bicycling, rowing, and resistive capabilities. The small and compact workout gear will be evaluated in the orbital outpost’s microgravity environment before being used on longer term missions to the Moon, Mars, and beyond.
Expedition 72 Flight Engineer Butch Wilmore works inside the International Space Station’s Columbus laboratory module to install the European Enhanced Exploration Exercise Device.
NASA

Wilmore encourages the next generation with a call to action: “Strap on your work hat and let’s go at it!” He emphasizes that tenacity and perseverance are essential for achieving anything of value. Motivated by a sense of patriotic duty and a desire to help those in need, Wilmore sees his astronaut role as a commitment to both his country and humanity at large.  

Wilmore believes he’s challenged every day at NASA. “Doing the right things for the right reasons is what motivates me,” he said.  

Astrobee, a robot that looks like a small black cube with two blue tentacle-like arms on top. Behind it, astronaut Suni Williams stretches her arms out to match Astrobee's arms.
Expedition 72 Commander Suni Williams monitors an Astrobee robotic free-flyer outfitted with tentacle-like arms containing gecko-like adhesive pads preparing to grapple a “capture cube.”
NASA

A retired U.S. Navy captain and veteran of three spaceflights, Williams is a helicopter pilot, basic diving officer, and the first person to run the Boston Marathon in space—once in 2007, and again aboard the station in 2025. Originally from Needham, Massachusetts, she brings a lifelong spirit of adventure and service to everything she does. 

“There are no limits,” said Williams. “Your imagination can make something happen, but it’s not always easy. There are so many cool things we can invent to solve problems—and that’s one of the joys of working in the space program. It makes you ask questions.” 

Hague, a Kansas native, has logged a total of 374 days in space across three missions. A U.S. Space Force colonel and test pilot, he’s served in roles across the country and abroad, including a deployment to Iraq. 

“When we’re up there operating in space, it’s focused strictly on mission,” said Hague. “We are part of an international team that spans the globe and works with half a dozen mission control centers that are talking in multiple languages — and we figure out how to make it happen. That’s the magic of human spaceflight: it brings people together.” 

Hague, wearing a gray t-shirt and smiling at the camera, is inside the cupola with hardware for the Rhodium Plant LIFE investigation. To his right floats the hardware, a shiny gold box that holds six glass sample tubes with a white sticker that says “Rhodium.” Earth is visible through the cupola windows in the background.
Expedition 72 Pilot Nick Hague inside the cupola with space botany hardware that supports the Rhodium Plant LIFE investigation.
NASA

For Williams, Wilmore, Hague, Gorbunov, and the team supporting them, Crew-9 marks the beginning of a new era of space exploration — one driven by innovation, perseverance, and the unyielding dream of reaching beyond the stars.  

Watch the full press conference following the crew’s return to Earth here. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 9 min read
      The Earth Observer Editor’s Corner: April–June 2025
      NASA’s Earth science missions have continued to demonstrate remarkable adaptability and innovation, balancing the legacy of long-standing satellites with the momentum of cutting-edge new technologies. The Terra platform, the first of three Earth Observing System flagship missions, has been in orbit since December 1999. Over a quarter-century later, four of its five instruments continue to deliver valuable data, despite recent power challenges. As of this writing, Terra’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) – Visible–Near Infrared (VNIR) and Thermal Infrared (TIR) bands, Multi-angle Imaging SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS), and one of the two Clouds and the Earth’s Radiant Energy Systems (CERES) instruments onboard, are all still producing science data. For reasons explained below, only the Measurement of Pollution in the Troposphere (MOPITT) instrument has been shut down completely, after 25 years of successful operations. The longevity of the Terra instruments is credited to Terra’s instrument team members, who have skillfully adjusted operations to compensate for the reduction in power and extend Terra’s scientific contributions for as long as possible.
      Terra has been experiencing power-based limitations caused by platform orbital changes and solar array impacts. On November 28, 2024, one of Terra’s power-transmitting shunt units failed. A response team reviewed Terra’s status, and discussed potential impacts and options. Consequently, the team changed the battery charge rate and reduced spacecraft power demands by placing the ASTER instrument into safe mode.
      In order to maintain power margins, the Terra team also moved the MOPITT instrument from science mode into safe mode on February 4, 2025, ceasing data collection. On April 9, 2025, the Terra project determined that additional power was needed for the platform and MOPITT was moved from safe mode and fully turned off, ending the instrument’s carbon monoxide data record of near-global coverage every three days.
      MOPITT was the Canadian Space Agency’s (CSA) contribution to the Earth Observing System. Launched as part of Terra’s payload in 1999, it became the longest-running air quality monitor in space, and the longest continuously operating Canadian space mission in history. MOPITT’s specific focus was on the distribution, transport, sources, and sinks of carbon monoxide (CO) in the troposphere – see Figure. The spectrometer’s marquee Earthdata products have included MOPITT Near Real-Time Datasets and offerings from the MOPITT Science Investigator-led Processing System (MOPITT SIPS). From tracking pollution from wildfires to providing data that informs international climate agreements, MOPITT served as a powerful tool for gathering data about pollution in the lowest portion of Earth’s atmosphere, informing research, policies, and even helping to advance forecasting models used by scientists worldwide. Congratulations to the MOPITT team for more than 25 years of groundbreaking science and international collaboration!
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Figure. This data visualization of total column carbon monoxide was created using MOPITT data from 2000-2019. In these maps, yellow areas have little or no carbon monoxide, while progressively higher concentrations are shown in orange, red, and dark red. Figure Credit: NASA’s Goddard Space Flight Center/SVS As chance would have it, the MOPITT Team had planned a 25th anniversary celebration in April, 10–11, 2025, at CSA headquarters in Longueuil, Quebec and online – which began one day after the instrument was shut down. The celebration was a fitting closeout to the MOPITT mission and a celebration of its accomplishments. Over the two days, more than 45 speakers shared memories and presented findings from MOPITT’s quarter-century record of atmospheric carbon monoxide monitoring. Its data showed a global decline in carbon monoxide emissions over two decades and could also track the atmospheric transport of the gas from fires and industry from individual regions. MOPITT is a testament to remarkable international collaboration and achievement. As it is officially decommissioned, its data record will continue to drive research for years to come.
      The Director General of the Canadian Space Agency—a key MOPITT partner—delivered remarks, and both Ken Jucks [NASA HQ— Program Manager for the Upper Atmosphere Research Program (UARP)] and Helen Worden [National Center for Atmospheric Research— MOPITT U.S. Principal Investigator] attended representing the U.S.
      More information is available in a recently-released Terra blog post and on the Canadian Space Agency MOPITT website.
      After continued investigation and monitoring of platform battery status, the Terra Flight Operations Team (FOT) determined there was sufficient power to resume imaging with ASTER’s VNIR bands, and as a result, ASTER once again began collecting VNIR data on January 17, 2025. Subsequently, ASTER resumed acquisitions for the TIR bands on April 15, 2025. (The ASTER Shortwave Infrared (SWIR) bands have been shut down since 2008).
      As one long-serving mission sunsets its operations, new missions are stepping in to carry forward the legacy of Earth system science with fresh capabilities and approaches. Launched on May 25, 2023, the NASA Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission provides a groundbreaking approach to studying tropical cyclones using a passive microwave sounder CubeSat constellation. TROPICS uses multiple small satellites flying in a carefully engineered formation to measure precipitation structure as well as temperature and humidity profiles both within and outside of storms.
      Unlike traditional polar-orbiting satellites, TROPICS’ low-inclination orbits allow for hourly revisits over tropical regions, enabling scientists to better monitor storm structure, intensity changes, and key processes like upper-level warm core formation and convective bursts.
      The mission has already significantly contributed to operational forecasting and scientific research. With over 10 billion observations to date, TROPICS data have been used to validate storm models, support early-warning systems, and improve forecasts for events like Hurricane Franklin and Typhoon Kong-rey. Collaborations with agencies like the National Hurricane Center and the Joint Typhoon Warning Center have shown the value of TROPICS channels, particularly the 204.8 GHz channel, in identifying storm structure and intensity. The data are publicly available through the Goddard Earth Sciences Data and Information Services Center (GES DISC), and TROPICS continues to set the stage for the next generation of rapid-revisit Earth observation missions. To read more about the last two years of successful science operations with TROPICS, see NASA’s TROPICS Mission: Offering Detailed Images and Analysis of Tropical Cyclones.
      While some missions focus on monitoring atmospheric processes, others are expanding the frontiers of Earth observation in entirely different domains—ranging from seafloor mapping to land surface monitoring and beyond. NASA’s Ice, Clouds, and land Elevation Satellite–2 (ICESat-2) mission continues to provide critical data on Earth’s changing ice sheets, glaciers, and other environmental features. In March 2025, the satellite achieved a significant milestone by firing its two trillionth laser pulse, measuring clouds off the coast of East Antarctica. Despite challenges, such as a solar storm in May 2024 that temporarily disrupted operations, the mission has resumed full functionality, providing high-resolution data that has enabled scientists to map over 16 years of ice sheet changes. The mission’s advanced laser altimeter system, ATLAS, continues to deliver unprecedented detail in monitoring Earth’s changing ice sheets, glaciers, forests, and ocean floor.
      The ICESat-2 Satellite-Derived Bathymetry (SDB) workshop, held on March 17, 2025, in conjunction with the US-Hydro meeting, brought together experts and stakeholders from government, academia, and industry to explore the current capabilities and future potential of satellite-based seafloor mapping. With over 2000 journal articles referencing ICESat-2 in the context of bathymetry, the workshop underscored the growing importance of this technology in coastal management, navigation, habitat monitoring, and disaster response. For more details, see the ICESat-2 Applications Team Hosts Satellite Bathymetry Workshop report.
      As satellite technologies continue to evolve, so do the scientific communities that rely on them, bringing researchers together to share insights, refine data products, and explore new applications across a range of Earth and atmospheric science disciplines. As of early 2025, NASA’s Stratospheric Aerosol and Gas Experiment III (SAGE III) aboard the International Space Station (ISS) continues to provide critical insights into Earth’s atmospheric composition. In addition to scientific advancements, SAGE III/ISS has enhanced public accessibility to its data. In February 2025, the mission launched updates to its Quicklook and Expedited data portal, introducing a new ‘Highlights’ tab to showcase major stratospheric events and a ‘Comparisons’ tab for validating measurements with ground-based stations. These enhancements aim to make SAGE III/ISS data more accessible and increase its utilization for atmospheric research.
      The most recent SAGE III/ISS Science Team Meeting took place in October 2024 at NASA Langley Research Center and was held in hybrid format. Around 50 scientists gathered to discuss recent advancements, mission updates, and future directions in upper troposphere–stratosphere (UTS) research. The SAGE III/ISS team celebrated eight years of continuous data collection aboard the ISS and presented Version 6.0 of SAGE III/ISS data products during the meeting, which addresses previous data biases and enhances aerosol profile recovery. Presentations also covered aerosol and cloud studies, lunar-based aerosol retrievals, and collaborative projects using data from multiple satellite platforms and instruments. To learn more, see the full Summary of the 2024 SAGE III/ISS Meeting.
      Moving on to personnel announcements, I wish to extend my condolences to the friends and family of Dr. Stanley Sander, who passed away in March 2025. Sander devoted over 50 years to atmospheric science at NASA’s Jet Propulsion Laboratory, making groundbreaking contributions to stratospheric ozone research, air pollution, and climate science. His precise laboratory work on reaction kinetics and spectroscopy became foundational for atmospheric modeling and environmental policy, including the Montreal Protocol. Sander also played a key role in satellite calibration, mentored dozens of young scientists, and held several leadership positions at JPL. Remembered for his brilliance, humility, and kindness, his legacy endures through both his scientific achievements and the many lives he influenced. See In Memoriam: Dr. Stanley Sander.
      On a happier, though bittersweet, note, my congratulations to Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] who retired from NASA on April 30, 2025, after 42 years of distinguished service. With a background in chemistry and atmospheric science, he played a leading role in NASA’s efforts to understand Earth’s atmosphere and climate using satellite data and modeling. Throughout his career, Kaye has held various key leadership positions, managed major missions, e.g., the series of Shuttle-based Atmospheric Laboratory of Applications and Science (ATLAS) experiments, and supported the development of early-career scientists. He also represented NASA in national and international science collaborations and advisory roles. Kaye received numerous awards, published extensively, and was widely recognized for his contributions to Earth science and global climate research. I extend my sincere thanks to Jack for his many years of vital leadership and lasting contributions to the global Earth science community!
      Barry Lefer [NASA HQ—Tropospheric Composition Program Manager] has taken over as Acting Associate Director for Research in ESD. Reflecting on Kaye’s impact, Lefer said, “Jack has been a wonderful friend and mentor. The one thing about Jack that has had the biggest impact on me (besides his incredible memory) is his kindness. He has an enormous heart. He will be missed, but his impact on Earth Science will endure for a very long time!” See the full announcement, Jack Kaye Retires After a Storied Career at NASA.
      Steve Platnick
      EOS Senior Project Scientist
      Share








      Details
      Last Updated Jun 11, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      4 Min Read NASA Student Challenge Prepares Future Designers for Lunar Missions
      At NASA’s Johnson Space Center in Houston, the next generation of lunar explorers and engineers are already hard at work. Some started with sketchbooks and others worked with computer-aided design files, but all had a vision of how design could thrive in extreme environments.
      Thanks to NASA’s Student Design Challenge, Spacesuit User Interface Technologies for Students (SUITS), those visions are finding their way into real mission technologies.
      NASA’s Spacesuit User Interface Technologies for Students (SUITS) teams test their augmented reality devices at the Mars Rock Yard during the 2025 test week at Johnson Space Center in Houston.
      Credit: NASA/James Blair The SUITS challenge invites university and graduate students from across the U.S. to design, build, and test interactive displays integrated into spacesuit helmets, continuing an eight-year tradition of hands-on field evaluations that simulate conditions astronauts may face on the lunar surface. The technology aims to support astronauts with real-time navigation, task management, and scientific data visualization during moonwalks. While the challenge provides a unique opportunity to contribute to future lunar missions, for many participants, SUITS offers something more: a launchpad to aerospace careers.
      The challenge fosters collaboration between students in design, engineering, and computer science—mirroring the teamwork needed for real mission development.
      NASA SUITS teams test their augmented reality devices at Johnson’s Mars Rock Yard on May 21, 2025.
      Credit: NASA/Robert Markowitz SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space.
      Keya Shah
      Softgoods Engineering Technologist
      Keya Shah, now a softgoods engineering technologist in Johnson’s Softgoods Laboratory, discovered her path through SUITS while studying industrial design at the Rhode Island School of Design (RISD).
      “SUITS taught me how design can be pushed to solve for the many niche challenges that come with an environment as unique and unforgiving as space,” Shah said. “Whether applied to digital or physical products, it gave me a deep understanding of how intuitive and thoughtfully designed solutions are vital for space exploration.”
      As chief designer for her team’s 2024 Mars spacewalk project, Shah led more than 30 designers and developers through rounds of user flow mapping, iterative prototyping, and interface testing.
      “Design holds its value in making you think beyond just the ‘what’ to solve a problem and figure out ‘how’ to make the solution most efficient and user-oriented,” she said, “SUITS emphasized that, and I continually strive to highlight these strengths with the softgoods I design.”
      Shah now works on fabric-based flight hardware at Johnson, including thermal and acoustic insulation blankets, tool stowage packs, and spacesuit components.
      “There’s a very exciting future in human space exploration at the intersection of softgoods with hardgoods and the digital world, through innovations like smart textiles, wearable technology, and soft robotics,” Shah said. “I look forward to being part of it.”
      Softgoods Engineering Technologist Keya Shah evaluates the SUITS interface design during the 2025 test week.
      Credit: NASA/James Blair For RISD alumnus Felix Arwen, now a softgoods engineer at Johnson, the challenge offered invaluable hands-on experience. “It gave me the opportunity to take projects from concept to a finished, tested product—something most classrooms didn’t push me to do,” Arwen said.
      Serving as a technical adviser and liaison between SUITS designers and engineers, Arwen helped bridge gaps between disciplines—a skill critical to NASA’s team-based approach.
      “It seems obvious now, but I didn’t always realize how much design contributes to space exploration,” Arwen said. “The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.”
      Arwen played a key role in expanding RISD’s presence across multiple NASA Student Design Challenges, including the Human Exploration Rover Challenge, the Micro-g Neutral Buoyancy Experiment Design Teams, and the Breakthrough, Innovative, and Game-changing Idea Challenge. The teams, often partnering with Brown University, demonstrated how a design-focused education can uniquely contribute to solving complex engineering problems.
      “NASA’s Student Design Challenges gave me the structure to focus my efforts on learning new skills and pursuing projects I didn’t even know I’d be interested in,” he said.
      It seems obvious now, but I didn’t always realize how much design contributes to space exploration. The creative, iterative process is invaluable. Our work isn’t just about aesthetics—it’s about usability, safety, and mission success.
      Felix Arwen
      Softgoods Engineer
      Softgoods Engineer Felix Arwen tests hardware while wearing pressurized gloves inside a vacuum glovebox. Both Arwen and Shah remain involved with SUITS as mentors and judges, eager to support the next generation of space designers.
      Their advice to current participants? Build a portfolio that reflects your passion, seek opportunities outside the classroom, and do not be afraid to apply for roles that might not seem to fit a designer.
      “While the number of openings for a designer at NASA might be low, there will always be a need for good design work, and if you have the portfolio to back it up, you can apply to engineering roles that just might not know they need you yet,” Arwen said.
      SUIT teams test their augmented reality devices during nighttime activities on May 21, 2025.
      Credit: NASA/Robert MarkowitzNASA/Robert Markowitz As NASA prepares for lunar missions, the SUITS challenge continues to bridge the gap between student imagination and real-world innovation, inspiring a new wave of space-ready problem-solvers.
      “Design pushes you to consistently ask ‘what if?’ and reimagine what’s possible,” Shah said. “That kind of perspective will always stay core to NASA.”
      Are you interested in joining the next NASA SUITS challenge? Find more information here.
      The next challenge will open for proposals at the end of August 2025.
      About the Author
      Sumer Loggins

      Share
      Details
      Last Updated Jun 10, 2025 Related Terms
      Johnson Space Center Spacesuits STEM Engagement at NASA Explore More
      4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts 
      Article 5 hours ago 3 min read NASA, ISRO Research Aboard Fourth Private Astronaut Mission to Station
      Article 6 days ago 4 min read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Earth scientist Compton J. Tucker has been elected to the National Academy of Sciences for his work creating innovative tools to track the planet’s changing vegetation from space. It’s research that has spanned nearly 50 years at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, where he is a visiting scientist after retiring in March. 
      Tucker’s research began with identifying wavelengths of light that are absorbed or reflected as plants undergo photosynthesis, and has evolved into calculating the health and productivity of vegetation over time with satellites. 
      “I’m honored and surprised,” Tucker said of his election. “There were opportunities at the Goddard Space Flight Center that have enabled this work that couldn’t be found elsewhere. There were people who built satellites, who understood satellite data, and had the computer code to process it. All the work I’ve done has been part of a team, with other people contributing in different ways. Working at NASA is a team effort of science and discovery that’s fun and intellectually rewarding.” 

      Earth scientist Compton Tucker, who has studied remote sensing of vegetation at NASA Goddard for 50 years, has been elected to the National Academy of Sciences.Courtesy Compton Tucker Tucker earned his master’s and doctoral degrees from Colorado State University, where he worked on a National Science Foundation-funded project analyzing spectrometer data of grassland ecosystems. In 1975, he came to NASA Goddard as a postdoctoral fellow and used what he learned in his graduate work to modify the imager on National Oceanic and Atmospheric Administration (NOAA) meteorological satellites and modify Landsat’s thematic mapper instrument. 
      He became a civil servant at the agency in 1977, and continued work with radiometers to study vegetation – first with handheld devices, then with NOAA’s Advanced Very High Resolution Radiometer satellite instruments.  He has also used data from Landsat satellites, Moderate Resolution Imaging Spectroradiometer instruments, and commercial satellites. His scientific papers have been cited 100,000 times, and one of his recent studies mapped 10 billion individual trees across Africa’s drylands to inventory carbon storage at the tree level.
      “The impact of Compton Tucker’s work over the last half-century at Goddard is incredible,” said Dalia Kirschbaum, director of the Earth Sciences Division at NASA Goddard. “Among his many achievements, he essentially developed the technique of using satellites to study photosynthesis from plants, which people have used to monitor droughts, forecast crop shortages, defeat the desert locust, and even predict disease outbreaks. This is a well-deserved honor.”
      Goddard scientist Compton Tucker’s work using remote sensing instruments to study vegetation involved field work in Iceland in 1976, left, graduate student research at Colorado State University in the early 1970s, top right, and analyzing satellite data stored on tape reels at Goddard.Courtesy Compton Tucker The National Academy of Sciences was proposed by Abraham Lincoln and established by Congress in 1863, charged with advising the United States on science and technology. Each year, up to 120 new members are elected “in recognition of their distinguished and continuing achievements in original research,” according to the organization.
      In addition his role as a visiting scientist at Goddard, Tucker is also an adjunct professor at the University of Maryland and a consulting scholar at the University of Pennsylvania’s University Museum. He was awarded the National Air and Space Collins Trophy for Current Achievement in 1993 and the Vega Medal by the Swedish Society of Anthropology and Geography in 2014. He is a fellow of the American Association for the Advancement of Science and the American Geophysical Union, and won the Senior Executive Service Presidential Rank Award for Meritorious Service in 2017, among other honors. 
      By Kate Ramsayer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jun 05, 2025 EditorErica McNameeContactKate D. Ramsayerkate.d.ramsayer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      Goddard Space Flight Center Earth General Landsat Moderate Resolution Imaging Spectroradiometer (MODIS) View the full article
    • By European Space Agency
      Image: A thick plume of sand and dust from the Sahara Desert is seen in these satellite images blowing from the west coast of Africa across the Atlantic Ocean. View the full article
    • By NASA
      4 Min Read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
      And the winner is… the University of Utah in Salt Lake City. The Utah Student Robotics Club won the grand prize Artemis Award on May 22 for NASA’s 2025 Lunabotics Challenge held at The Astronauts Memorial Foundation’s Center for Space Education at the Kennedy Space Center Visitor Complex in Florida. 
      “Win was our motto for the whole year,” said Brycen Chaney, University of Utah, president of student robotics. “We had a mission objective to take our team and competition a step further, but win was right up front of our minds.”
      Lunabotics is an annual challenge where students design and build an autonomous and remote-controlled robot to navigate the lunar surface in support of the Artemis campaign. The students from the University of Utah used their robot to excavate simulated regolith, the loose, fragmented material on the Moon’s surface, as well as built a berm. The students, who competed against 37 other teams, won grand prize for the first time during the Lunabotics Challenge.
      “During the 16th annual Lunabotics University Challenge the teams continued to raise the bar on excavating, transporting, and depositing lunar regolith simulant with clever remotely controlled robots,” said Robert Mueller, senior technologist at NASA Kennedy for Advanced Products Development in the agency’s Exploration Research and Technology Programs Directorate, and lead judge and co-founder of the original Lunabotics robotic mining challenge. “New designs were revealed, and each team had a unique design and operations approach.”
      Students from University of Illinois Chicago receive first place for the Robotic Construction Award during the 2025 Lunabotics Challenge.NASA/Isaac Watson Other teams were recognized for their achievements: The University of Illinois Chicago placed first for the Robotic Construction Award. “It’s a total team effort that made this work,” said Elijah Wilkinson, senior and team captain at the University of Illinois Chicago. “Our team has worked long and hard on this. We have people who designed the robot, people who programmed the robot, people who wrote papers, people who wired the robot; teamwork is really what made it happen.”
      The University of Utah won second and the University of Alabama in Tuscaloosa came in third place, respectively. The award recognizes the teams that score the highest points during the berm-building operations in the Artemis Arena. Teams are evaluated based on their robot’s ability to construct berms using excavated regolith simulant, demonstrating effective lunar surface construction techniques.
      To view the robots in action from the Robot Construction Award winners, please click on the following links: University of Illinois Chicago, University of Utah, University of Alabama in Tuscaloosa.
      Students from Purdue University in Lafayette, Indiana received the Caterpillar Autonomy Award during the 2025 Lunabotics Challenge.
      NASA/Isaac Watson Students from Purdue University in Lafayette, Indiana received the Caterpillar Autonomy Award for their work. The University of Alabama placed second, followed by the University of Akron in Ohio. This award honors teams that successfully complete competition activities autonomously. It emphasizes the development and implementation of autonomous control systems in lunar robotics, reflecting real-world applications in remote and automated operations.
      An Artemis I flag flown during the Nov. 16, 2022, mission was presented to the University of Illinois Chicago, as well as the University of Virginia in Charlottesville as part of the Innovation Award. The recognition is given to teams for their original ideas, creating efficiency, effective results, and solving a problem.
      Dr. Eric Meloche from the College of DuPage in Glen Ellyn, Illinois, and Jennifer Erickson, professor from the Colorado School of Mines in Golden each received an Artemis Educator Award, a recognition for educators, faculty, or mentors for their time and effort inspiring students.
      The University of Utah received the Effective Use of Communications Power Award and the University of Virginia the agency’s Center for Lunar and Asteroid Surface Science Award.
      Students from the Colorado School of Mines pose for a photo after receiving a Systems Engineering Award during the 2025 Lunabotics Competition.
      NASA/Isaac Watson Students from the Colorado School of Mines placed first receiving a Systems Engineering Award. University of Virginia in Charlottesville and the College of DuPage in Glen Ellyn, Illinois, came in second and third places.
      This is truly a win-win situation. The students get this amazing experience of designing, building, and testing their robots and then competing here at NASA in a lunar-like scenario while NASA gets the opportunity to study all of these different robot designs as they operate in simulated lunar soil. Lunabotics gives everyone involved new technical knowledge along with some pretty great experience.” 
      Kurt Leucht
      Commentator, Lunabotics Competition and Software Development team lead
      Below is a list of other awards given to students:
      Systems Engineering Paper Award Nova Award: Liberty University in Lynchburg, Virginia; University of Virginia; College of DuPage Best Use of Systems Engineering Tools: The University of Utah Best Use of Reviews as Control Gates: The University of Alabama Systems Engineering Paper Award Leaps and Bounds Award: The University of Miami in Florida Best presentation award by a first year team: University of Buffalo in New York Presentations and demonstrations awards: University of Utah, Colorado School of Mines, University of Miami About the Author
      Elyna Niles-Carnes

      Share
      Details
      Last Updated Jun 03, 2025 Related Terms
      Kennedy Space Center For Colleges & Universities Learning Resources NASA STEM Projects Next Gen STEM Partner with NASA STEM STEM Engagement at NASA STEM Impacts Explore More
      4 min read Integrated Testing on Horizon for Artemis II Launch Preparations
      Article 5 days ago 3 min read NASA Interns Conduct Aerospace Research in Microgravity
      The NASA Science Activation program’s STEM (Science, Technology, Engineering, and Mathematics) Enhancement in Earth Science…
      Article 7 days ago 5 min read Career Spotlight: Mathematician (Ages 14-18)
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...