Jump to content

Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The NASA History Office brings you the new Spring 2025 issue of NASA History News & Notes reflecting on some of the transitional periods in NASA’s history, as well as the legacies of past programs. Topics include NASA’s 1967 class of astronauts, historic experiments in airborne astronomy, NASA’s aircraft consolidation efforts in the 1990s, lightning observations from space, the founding of the NACA, the DC-8 airborne science laboratory, and more!

Front Cover for the Spring 2025 edition of NASA History News & Notes

Volume 42, Number 1
Spring 2025

Featured Articles

From the Chief Historian

By Brian Odom

In the first few months of 2025, NASA will celebrate several significant anniversaries, including the 110th anniversary of the National Advisory Committee for Aeronautics (NACA) (March 3), the 55th anniversary of the launch of Apollo 13 (April 11), and the 35th anniversary of the launch of the Hubble Space Telescope (April 24). Celebrating these important milestones is a way for us as an agency and for the public to reflect upon where we have been and what we have accomplished and to think about what we might accomplish next. Continue Reading

The XS-11 and the Transition Away from Mandatory Jet Pilot Training for NASA Astronauts

By Jennifer Ross-Nazzal

Flying in space has been associated with pilots ever since 1959, when NASA announced its first class of astronauts, known as the Mercury 7. Part of being a professional astronaut meant you were a certified jet pilot. Even the scientist-astronauts, so named to differentiate them from the astronauts assigned to the Mercury and Gemini missions, selected in 1965 and in 1967, received pilot training. Until NASA better understood the impact of weightlessness on the human body, Robert R. Gilruth, head of the Manned Spacecraft Center (MSC) in Houston, believed all astronauts should meet this qualification. But when five scientist-astronauts from the 1967 class had a rocky transition, leading them to resign—due to their disinterest in flying at the cost of their scientific training and no spaceflight opportunities—it eventually led NASA to rethink their idea of having all astronauts become jet pilots. Continue Reading

Portrait of NASA's 1967 class of astronauts at a table
Portrait of NASA’s 1967 group of astronauts. Seated at the table, left to right, are Philip K. Chapman, Robert A. R. Parker, William E. Thornton, and John A. Llewellyn. Standing, left to right, are Joseph P. Allen IV, Karl G. Henize, Anthony W. England, Donald L. Holmquest, Story Musgrave, William B. Lenoir, and Brian T. O’Leary.
NASA

The High-Flying Legacy of Airborne Observation: How Experimental Aircraft Contributed to Astronomy at NASA

By Lois Rosson

In June 2011, the Stratospheric Observatory for Infrared Astronomy (SOFIA) chased down Pluto’s occultation of a far-away star. … SOFIA’s 2011 observation of Pluto followed up on a historic 1988 observation made by the airborne Kuiper Airborne Observatory (KAO) that proved that Pluto had an atmosphere at all. The technical versatility of both flights, conducted from aircraft hurtling stabilized telescopes through the air, speaks to the legacy of airborne astronomical observation at NASA. But how did this idiosyncratic format emerge in the first place? Airborne astronomy, in which astronomical observations are made from a moving aircraft, was attempted almost as soon as airplanes themselves were developed. Continue Reading

NASA’s Tortuous Effort to Consolidate its Aircraft

By Robert Arrighi

Thirty years ago, on January 6, 1995, NASA Administrator Dan Goldin announced, “We’ve started a revolution at NASA. It’s real. We have a road map for change. We’ve already begun.” Thus began one of the agency’s most daunting endeavors, a top-to-bottom reassessment of NASA’s processes, programmatic assignments, and staffing levels. One of the most controversial aspects of this effort was the proposal to transfer nearly all of the agency’s research aircraft to Dryden Flight Research Center (today known as Armstrong). Continue Reading

Three ER-2 aircraft fly in formation over the Golden Gate Bridge in California.
Three ER-2 Aircraft in formation over Golden Gate Bridge, San Francisco, CA on their final flight out of NASA Ames Research Center before redeployment to NASA’s Dryden Flight Research Center, now known as NASA Armstrong.
NASA/Eric James

The Space Between: Mesoscale Lightning Observations and Weather Forecasting, 1965–82

By Brad Massey

Skylab astronaut Edward G. Gibson looked down at Earth often during his 84 days on NASA’s first space station. From his orbital vantage point, Gibson took in the breathtaking views of our planet’s diverse landscapes. He also noted the interesting behavior of the planet’s most powerful electrical force: lightning. … Gibson’s words were of great interest to the lightning researchers affiliated with NASA’s Severe Storms and Local Research Program and others who believed observing Earth’s lightning from low Earth orbit generated valuable data that meteorologists could use to better forecast dangerous storm characteristics and behavior. With these motivations in mind, researchers created new Earth- and space-based experiments from the mid-1960s to the first Space Shuttle missions in the early 1980s that observed lightning on a regional level. Continue Reading

Adding Color to the Moon: Jack Kinzler’s Oral History Interviews

By Sandra Johnson

Manned Spacecraft Center (MSC) Director Robert R. Gilruth placed a call to Jack Kinzler less than four months before the Apollo 11 launch. Gilruth asked him to attend a meeting with a high-level group of individuals from both MSC and NASA Headquarters to discuss ideas for celebrating the first lunar landing. Kinzler, in his capacity as the chief of the Technical Services Division, arrived ready to present his suggestions for commemorating the achievement. Continue Reading

Astronaut Edwin E. Aldrin Jr., lunar module pilot of the first lunar landing mission, poses for a photograph beside the deployed United States flag during an Apollo 11 extravehicular activity (EVA) on the lunar surface. The Lunar Module (LM) is on the left, and the footprints of the astronauts are clearly visible in the soil of the moon. Astronaut Neil A. Armstrong, commander, took this picture with a 70mm Hasselblad lunar surface camera. While astronauts Armstrong and Aldrin descended in the LM, the "Eagle", to explore the Sea of Tranquility region of the moon, astronaut Michael Collins, command module pilot, remained with the Command and Service Modules (CSM) "Columbia" in lunar orbit.
Apollo 11 astronaut Edwin E. “Buzz” Aldrin Jr. poses for a photograph beside the deployed United States flag during the mission’s extravehicular activity (EVA) on the lunar surface.
NASA

The Founding of the NACA

By James Anderson

One hundred ten years ago this month, NASA’s predecessor organization, the National Advisory Committee for Aeronautics (NACA), was founded. The date of the anniversary marks the passage of a rider to a naval appropriations bill that established the NACA for the modest sum of $5,000 annually. Telling the story of the NACA’s founding in this manner—using March 3, 1915, as the moment in time to represent the NACA’s beginning—is true, but it overlooks two crucial aspects of the founding. The founding was both a culmination and a turning point for science and aeronautics in the United States. Continue Reading

Remembering the DC-8 Airborne Science Laboratory at NASA

By Bradley Lynn Coleman

The NASA History Office and NASA Earth Science Division cohosted a workshop on the recently retired NASA DC-8 Airborne Science Laboratory (1986–2024) at the Mary W. Jackson NASA Headquarters Building in Washington, DC, October 24 and 25, 2024. The workshop celebrated the history of the legendary aircraft; documented DC-8–enabled scientific, engineering, education, and outreach activities; and captured lessons of the past for future operators. Continue Reading

EC98-44444-006~large.jpg?w=1920&h=1535&f
The DC-8 in flight near Lone Pine, California.
NASA/Jim Ross

Share

Details

Last Updated
Apr 01, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      by Dary Felix Garcia
      NASA is preparing to make history by sending humans to the Moon’s South Pole. There, astronauts will conduct moonwalks for exploration, science experiments, and prepare humanity for the journey to Mars. Missions of this scale require extensive planning, especially when accounting for emergency scenarios such as a crew member becoming incapacitated.  
      To address this critical risk, the South Pole Safety Challenge invited the public to develop a compact, effective device capable of safely rescuing astronauts during emergency situations on the Moon’s surface. Given the harsh and unpredictable conditions of the lunar South Pole, the rescue system must be lightweight, easy to use, and able to transport an incapacitated crew member weighing approximately 755 lbs. (343 kg), representing the crew member and their suit, without the help of the lunar rover. It must also be capable of covering up to 1.24 miles (2 kilometers) across slopes as steep as 20 degrees. 
      “The initiative saved the government an estimated $1,000,000 and more than three  years of work had the solutions been produced using in-house existing resources,” said Ryon Stewart, acting Program Manager of NASA’s Center of Excellence for Collaborative Innovation. “The effort demonstrated how crowdsourcing provides NASA with a wide diversity of innovative ideas and skills.”
      The global challenge received 385 unique ideas from 61 countries. Five standout solutions received a share of the $45,000 prize purse.  Each of the selected solutions demonstrated creativity, practicality, and direct relevance to NASA’s needs for future Moon missions.
      The global challenge received 385 unique ideas from 61 countries. Five standout solutions received a share of the $45,000 prize purse.  Each of the selected solutions demonstrated creativity, practicality, and direct relevance to NASA’s needs for future Moon missions.  
      First Place: VERTEX by Hugo Shelley – A self-deploying four-wheeled motorized stretcher that converts from a compact cylinder into a frame that securely encases an immobilized crew member for transport up to 6.2 miles (10 kilometers).   Second Place: MoonWheel by Chamara Mahesh – A foldable manual trolley designed for challenging terrain and rapid deployment by an individual astronaut.   Third Place: Portable Foldable Compact Emergency Stretcher by Sbarellati team – A foldable stretcher compatible with NASA’s Exploration Extravehicular Activity spacesuit.  Third Place: Advanced Surface Transport for Rescue (ASTRA) by Pierre-Alexandre Aubé – A collapsible three-wheeled device with a 1.2 mile (2 kilometer) range. Third Place: Getting Rick to Roll! by InventorParents – A rapidly deployable, tool-free design suited for functionality in low gravity settings.  NASA is identifying how to integrate some features of the winning ideas into current and future mission designs. Most intriguing are the collapsible concepts of many of the designs that would save crucial mass and volume. Additionally, the submissions offered innovative wheel designs to enhance current concepts. NASA expects to incorporate some features into planning for surface operations of the Moon. 
      HeroX hosted the challenge on behalf of NASA’s Extravehicular Activity and Human Surface Mobility Program. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate, managed the challenge. The program supports global public competitions and crowdsourcing as tools to advance NASA research and development and other mission needs.   
      Find more opportunities at https://www.nasa.gov/get-involved/ 
      View the full article
    • By NASA
      NASA’s Worm logo is displayed in front of the agency’s headquarters in Washington.Credit: NASA Two NASA employees are being  honored as part of the Samuel J. Heyman Service to America Medals, also known as the Sammies, recognizing outstanding federal employees who are addressing many of our country’s greatest challenges.
      Rich Burns of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and John Blevins of Marshall Space Flight Center in Huntsville, Alabama, were selected out of 350 nominees and are among 23 individuals and teams honored for their achievements as federal employees. They will be recognized at a ceremony in Washington on Tuesday, June 17, that also will be live streamed on the Sammies website. The honorees will be commended via videos and presenter remarks and receive medals for their achievements.
      Named after the founder of the Partnership for Public Service, the 2025 Service to America Medals awards celebrate federal employees who provided critical public services and made outstanding contributions to the health, safety, and national security of our country.
      “Rich and John exemplify the spirit of exploration and service that defines NASA and our nation’s civil servants,” said acting NASA Administrator Janet Petro. “Their leadership, ingenuity, and dedication have not only advanced America’s space program but also inspired the next generation of innovators. We are proud to see their achievements recognized among the very best of federal service.”
      Richard Burns, project manager for the Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer (OSIRIS-REx) at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and honoree of the 2025 Samuel J. Heyman Service to America MedalsCredit: NASA Burns was the project manager of the Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer (OSIRIS-REx) mission to collect a sample from an asteroid and oversaw operations from the developmental stage to the successful landing of the spacecraft’s Sample Return Capsule.
      The mission launched on Sept. 18, 2016, and after a nearly four-year journey, the OSIRIS-REx spacecraft successfully collected a sample from the asteroid Bennu on Oct. 20, 2020, which returned to Earth on Sept. 24, 2023, providing scientists with 120 grams of pristine material to study, the largest amount ever collected from an asteroid. Working to solidify OSIRIS-REx as a success, Burns set up multiple partnerships and communicated frequently with scientists, large and small businesses, NASA centers, and others to ensure the mission’s vision was carried out though each phase.
      During the mission, Burns had to handle unique challenges that required adapting to new situations. These included improving flight software to help the spacecraft avoid hazardous parts of Bennu’s rocky surface and working with NASA leaders to find a way to best protect the sample collected from Bennu after a large stone propped the collection canister open. Finally, when the sample was set to return to Earth, Burns worked extensively with NASA and military partners to prepare for the landing, focusing on the safety of the public along with the integrity of the sample to ensure the final part of the mission was a success.
      Burns helped OSIRIS-REx exceed its objectives all while under the original budget, allowing  NASA to share a portion of the sample with more than 80 research projects and make new discoveries about the possible origins of life on our planet. The spacecraft, now known as Origins, Spectral Interpretation, Resource Identification and Security – Apophis Explorer, is scheduled to rendezvous with the asteroid Apophis in 2029.
      “It’s humbling to accept an award based on the achievements of the amazingly talented, dedicated, and innovative OSIRIS-REx team,” Burns said. “I consider myself privileged to be counted among a team of true explorers who let no obstacle stand in the way of discovery.”
      John Blevins, chief engineer for the SLS (Space Launch System) rocket at NASA’s Marshall Space Flight Center in Huntsville, Alabama, stands inside the Vehicle Assembly Building at Kennedy Space Center in Florida during the stacking of the Artemis I rocket ahead of its first test flight, which successfully launched from Kennedy on Nov. 16, 2022.Credit: NASA Blevins is the chief engineer for the Space Launch System (SLS) rocket and is responsible for the various technical decisions that need to be made to ensure each mission is successful. This included calculating structural needs, thermal analyses of the effects, and studies of vibrations, acoustics, propulsion integration, among other work.
      Artemis I, the first test flight of the SLS rocket, successfully launched from NASA’s Kennedy Space Center in Florida on Nov. 16, 2022. In the time leading up to and during launch, Blevins led the team integrating the hardware for the mission working  to address unexpected events while SLS was on the pad prior to launch. This included significant lightning storms and two hurricanes impacting Kennedy Space Center in Florida.
      Blevins built a working coalition of engineering teams across the agency that previously did not exist. His ability to forge strong relationships on the various teams across the agency allowed for the successful launch of Artemis I. He continues to lead the engineering team behind SLS as they prepare for Artemis II, the second flight of SLS and the first crewed lunar mission of the 21st century.
      “This is a reflection on the hard work and dedication of the entire Artemis Team,” Blevins said. “I am working with an incredibly competent, dedicated team agencywide that goes above and beyond to promote the space exploration goals of our nation. I am honored to accept the award on their behalf.”
      Share
      Details
      Last Updated Jun 16, 2025 EditorTiernan P. DoyleContactTiernan P. Doyletiernan.doyle@nasa.govLocationNASA Headquarters Related Terms
      OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Common Exploration Systems Development Division Exploration Systems Development Mission Directorate Goddard Space Flight Center Marshall Space Flight Center OSIRIS-APEX (Origins, Spectral Interpretation, Resource Identification, and Security – Apophis Explorer) Space Launch System (SLS) View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      By Beth Ridgeway 
      NASA’s Student Launch competition celebrated its 25th anniversary on May 4, just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, bringing together more than 980 middle school, high school, college, and university students from across the U.S. to showcase and launch their high-powered rocketry designs.
      The event marked the conclusion of the nine-month challenge where teams designed, built, and launched more than 50 rockets carrying scientific payloads—trying to achieve altitudes between 4,000 and 6,000 feet before executing a successful landing and payload mission.
      “This is really about mirroring the NASA engineering design process,” Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region, said. “It gives students hands-on experience not only in building and designing hardware, but in the review and testing process.  We are helping to prepare and inspire students to get out of classroom and into the aerospace industry as a capable and energizing part of our future workforce.”
      NASA announced James Madison University as the overall winner of the agency’s 2025 Student Launch challenge, followed by North Carolina State University, and The University of Alabama in Huntsville. A complete list of challenge winners can be found on the agency’s Student Launch webpage.
      Participants from James Madison University – the overall winner of the 2025 NASA Student Launch competition – stand around their team’s high-powered rocket as it sits on the pad before launching on May 4 event. NASA/Krisdon Manecke Each year, a payload challenge is issued to the university teams, and this year’s task took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars. Teams were challenged to include sensor data from STEMnauts, non-living objects representing astronauts. The STEMnaut “crew” had to relay real-time data to the student team’s mission control, just as the Artemis astronaut crew will do as they explore the lunar surface.  
      Student Launch is one of NASA’s seven Artemis Student Challenges – activities that connect student ingenuity with NASA’s work returning to the Moon under Artemis in preparation for human exploration of Mars.
      The competition is managed by Marshall’s Office of STEM Engagement. Additional funding and support are provided by the Office of STEM Engagement’s Next Generation STEM project, NASA’s Marshall Space Flight Center, the agency’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies Inc.
      To watch the full virtual awards ceremony, please visit NASA Marshall’s YouTube channel.
      For more information about Student Launch, visit:
      https://www.nasa.gov/learning-resources/nasa-student-launch/
      Share
      Details
      Last Updated Jun 16, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Find Your Place For Colleges & Universities Learning Resources Explore More
      3 min read NASA Announces Teams for 2025 Student Launch Challenge
      Article 9 months ago 4 min read 25 Years Strong: NASA’s Student Launch Competition Accepting 2025 Proposals
      Article 10 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 Min Read NASA Seeks Commercial Feedback on Space Communication Solutions
      An illustration of a commercial space relay ecosystem. Credits: NASA / Morgan Johnson NASA is seeking information from U.S. and international companies about Earth proximity relay communication and navigation capabilities as the agency aims to use private industry satellite communications services for emerging agency science missions.

      “As part of NASA’s Communications Services Project, the agency is working with private industry to solve challenges for future exploration,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN Program. “Through this effort, NASA missions will have a greater ability to command spacecraft, resolve issues in flight, and bring home more data and scientific discoveries collected across the solar system.”

      In November 2024, NASA announced the TDRS (Tracking and Data Relay Satellite) system, the agency’s network of satellites relaying communications from the International Space Station, ground controls on Earth, and spacecraft, will support only existing missions.

      NASA, as one of many customers, will obtain commercial satellite services rather than owning and operating a replacement for the existing satellite system. As NASA transitions to commercial relay services, the agency will leverage commercial capabilities to ensure support for future missions and stimulate private investment into the Earth proximity region. Commercial service offerings could become available to NASA missions as early as 2028 and will continue to be demonstrated and validated through 2031.

      NASA’s SCaN issued a Request for Information on May 30. Responses are due by 5 p.m. EDT on Friday, July 11.

      NASA’s SCaN Program serves as the management office for the agency’s space communications and navigation. More than 100 NASA and non-NASA missions rely on SCaN’s two networks, the Near Space Network and the Deep Space Network, to support astronauts aboard the International Space Station and future Artemis missions, monitor Earth’s weather, support lunar exploration, and uncover the solar system and beyond.

      Learn more about NASA’s SCaN Program at:
      https://www.nasa.gov/scan
      Share
      Details
      Last Updated Jun 16, 2025 EditorJimi RussellContactMolly KearnsLocationGlenn Research Center Related Terms
      Commercial Space General Glenn Research Center The Future of Commercial Space Tracking and Data Relay Satellite (TDRS) Keep Exploring Discover More Topics From NASA
      Communicating with Missions
      Communications Services Project
      Commercial Space News
      Near Space Network

      View the full article
    • By European Space Agency
      Video: 00:24:33 Watch the replay of the ESA-CNES press conference held at the Paris Air Show 2025 (Le Bourget) on 16 June 2025, with Josef Aschbacher, Director General of ESA, and Lionel Suchet, Executive Vice President of CNES.
      Download the transcript.
      View the full article
  • Check out these Videos

×
×
  • Create New...