Members Can Post Anonymously On This Site
Spectrum takes flight and clears the launch pad
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Students from Tropico Middle School in Rosamond, California, build their own paper planes as part of a project during NASA Aero Fair on April 9, 2025.NASA/Genaro Vavuris A new generation of aerospace explorers will soon embark on a hands-on summer experience focusing on careers in science, mathematics, engineering, and technology (STEM). This month, NASA’s Armstrong Flight Research Center in Edwards, California, and the Flight Test Museum Foundation will launch the 2025 Junior Test Pilot School.
Held at Blackbird Airpark and Joe Davies Heritage Airpark in Palmdale, California, this six-week program invites elementary-aged students to step into the shoes of test pilots and engineers from 9 a.m. to 2 p.m. Mondays through Fridays, June 16 through July 25. Registration is free through participating school districts and the Flight Test Museum. Students will have direct access to legendary aircraft such as A-12, SR-71, U-2, F-86 Sabre, and NASA Boeing 747 Space Shuttle Carrier Aircraft.
The Junior Test Pilot School combines authentic NASA-designed curriculum, immersive aerospace activities, and direct engagement with engineers, test pilots, and scientists to inspire future aerospace professionals in the Antelope Valley – home to one of the nation’s highest concentrations of STEM careers.
“This program offers more than a glimpse into aerospace, it provides students a hands-on opportunity to solve real-world problems and see themselves in future STEM roles,” said Dr. Amira Flores, program integration manager for NASA’s California Office of STEM Engagement.
Daily lessons cover eight core modules: flight principles, stealth engineering, altitude effects, speed and g-force, payload impact, maneuverability, reconnaissance design, and jet engine systems.
Additionally, in collaboration with NASA Armstrong’s Aero Fair program, students will be guided through the program’s Wildfire Design Challenge by a NASA volunteer. Following the engineering design process, students will collaborate to design and build a prototype of an aerial vehicle that suppresses wildfires.
“Our junior test pilots learn to analyze the aircraft to figure out why they were designed the way they are and think like an engineer,” said Lisa Sheldon Brown, director of education at the Flight Test Museum. “Research shows that academic trajectory is set by fifth grade, making this the critical window to inspire STEM interest and career awareness.”
The program is delivered in partnership with the City of Palmdale and is supported by industry sponsors, including Lockheed Martin and Northrop Grumman. These partners not only provide funding and volunteers but also elevate career exposure by introducing students to diverse aerospace professionals within the region.
NASA Armstrong is a hub of aeronautical innovation and STEM workforce development in the Antelope Valley. Through programs like Aero Fair and partnerships like Junior Test Pilots School, Armstrong inspires and equips the next generation of engineers, pilots, and scientists.
The Flight Test Museum Foundation preserves the legacy and promotes the future of aerospace through education programs and historical preservation at the Blackbird Airpark and forthcoming Flight Test Museum at Edwards Air Force Base in Edwards, California.
For more about NASA’s Armstrong Flight Research Center, visit:
https://www.nasa.gov/armstrong
– end –
Elena Aguirre
Armstrong Flight Research Center, Edwards, California
(661) 276-7004
elena.aguirre@nasa.gov
Dede Dinius
Armstrong Flight Research Center, Edwards, California
(661) 276-5701
darin.l.dinius@nasa.gov
Explore More
5 min read NASA F-15s Validate Tools for Quesst Mission
Article 2 days ago 4 min read NASA Student Challenge Prepares Future Designers for Lunar Missions
Article 2 days ago 2 min read From Garment Industry to NASA: Meet Systems Engineer Daniel Eng
Article 6 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Dr. Natasha Schatzman Receives Vertical Flight Society (VFS) Award
The Forum 81 award was presented to Natasha Schatzman (center), with the award given by the parents of Alex Stoll, Mark and Lyn Stoll, and flanked by VFS Chair of the Board Harry Nahatis (left) and VFS Executive Director Angelo Collins (right). Source: https://gallery.vtol.org/image/AloOB. Photo Credit: Warren Liebmann In May 2025, Dr. Natasha Schatzman, aerospace engineer in the Aeromechanics Office at NASA Ames Research Center, received the inaugural Alex M. Stoll Award from the Vertical Flight Society (VFS). This award honors a professional in the field of vertical flight who “demonstrates an exceptional commitment to advancing not only the mission of their organization but makes extraordinary contributions to enhancing the well-being and happiness of their colleagues.” Dr. Schatzman began her career at Ames in 2008 as a student intern while simultaneously completing her undergraduate studies at the Georgia Institute of Technology (Georgia Tech). She stayed at Georgia Tech through graduate school and finished her Ph.D. dissertation in 2018 in the Aeronautical and Astronautical Engineering Department. Currently, Dr. Schatzman is focusing on assessments of rotorcraft performance and aeroacoustics through experimentation and modeling at Ames Research Center. The Alex M. Stoll Award is the second time she has been honored by the VFS. In 2023, Dr. Schatzman received the François-Xavier Bagnoud Vertical Flight Award which is given to a member “who is 35 years old or younger for their career-to-date outstanding contributions to vertical flight technology.” More information on Dr. Schatzman’s 2025 award is at: https://vtol.org/awards-and-contests/vertical-flight-society-award-winners?awardID=28
About the Author
Osvaldo R. Sosa Valle
Osvaldo Sosa is a dedicated and detail-oriented project coordinator at NASA Ames Research Center, where he supports operations for the Aeronautics Directorate. He is part of the Strategic Communications Team and serves as managing editor for the Aeronautics topic on the NASA website. With experience in event coordination, logistics, and stakeholder engagement, Osvaldo brings strong organizational and communication skills to every project. He is passionate about driving innovation, fostering strong leadership, and streamlining operations to enhance team collaboration and organizational impact.
Explore More
2 min read NASA Provides Hardware for Space Station DNA Repair Experiment
Article 6 hours ago 3 min read NASA’s Moffett Federal Airfield Hosts Boeing Digital Taxi Tests
Article 2 weeks ago 3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
Share
Details
Last Updated Jun 06, 2025 Related Terms
Ames Research Center View the full article
-
By NASA
The SpaceX Dragon spacecraft carrying the Axiom Mission 3 crew is pictured approaching the International Space Station on Jan. 20, 2024.Credit: NASA NASA, Axiom Space, and SpaceX are targeting 8:22 a.m. EDT, Tuesday, June 10, for launch of the fourth private astronaut mission to the International Space Station, Axiom Mission 4.
The mission will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The crew will travel to the orbiting laboratory on a new SpaceX Dragon spacecraft after launching on the company’s Falcon 9 rocket. The targeted docking time is approximately 12:30 p.m., Wednesday, June 11.
NASA will stream live coverage of launch and arrival activities on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
NASA’s mission responsibility is for integrated operations, which begins during the spacecraft’s approach to the space station, continues during the crew’s approximately two-week stay aboard the orbiting laboratory while conducting science, education, and commercial activities, and concludes once the spacecraft exits the station.
Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.
As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
The private mission also carries the first astronauts from Poland and Hungary to stay aboard the space station.
NASA will join the mission prelaunch teleconference hosted by Axiom Space (no earlier than one hour after completion of the Launch Readiness Review) at 6 p.m., Monday, June 9, with the following participants:
Dana Weigel, manager, International Space Station Program, NASA Allen Flynt, chief of mission services, Axiom Space William Gerstenmaier, vice president, Build and Flight Reliability, SpaceX Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force To join the teleconference, media must register with Axiom Space by 12 p.m., Sunday, June 8, at:
https://bit.ly/4krAQHK
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Tuesday, June 10
6:15 a.m. – Axiom Space and SpaceX launch coverage begins.
7:25 a.m. – NASA joins the launch coverage on NASA+.
8:22 a.m. – Launch
NASA will end coverage following orbital insertion, which is approximately 15 minutes after launch. As it is a commercial launch, NASA will not provide a clean launch feed on its channels.
Wednesday, June 11
10:30 a.m. – Arrival coverage begins on NASA+, Axiom Space, and SpaceX channels.
12:30 p.m. – Targeted docking to the space-facing port of the station’s Harmony module.
Arrival coverage will continue through hatch opening and welcome remarks.
All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.
The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/commercial-space
-end-
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov
Share
Details
Last Updated Jun 04, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Private Astronaut Missions Commercial Space Humans in Space International Space Station (ISS) ISS Research Johnson Space Center Kennedy Space Center View the full article
-
By NASA
NASA Teams responsible for preparing and launching Artemis II at NASA’s Kennedy Space Center in Florida are set to begin a series of integrated tests to get ready for the mission. With the upper stage of the agency’s SLS (Space Launch System) integrated with other elements of the rocket, engineers are set to start the tests to confirm rocket and ground systems are working and communicating as planned.
While similar to the integrated testing campaign conducted for NASA’s uncrewed Artemis I test flight, engineers have added tests ahead of Artemis II to prepare for NASA’s first crewed flight under the Artemis campaign – an approximately 10-day journey by four astronauts around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Interface Verification Testing
Verifies the functionality and interoperability of interfaces across elements and systems. Teams will conduct this test from the firing room in the Launch Control Center and perform health and status checks of various systems and interfaces between the SLS core stage, the solid rocket boosters, and the ground systems. It will ensure different systems, including core stage engines and booster thrust control, work as planned. Teams also will perform the same series of tests with the interim cryogenic propulsion stage and Orion before conducting a final interface test with all segments.
Program Specific Engineering Test
Teams will conduct separate engineering tests for the core stage, rocket boosters, and upper stage following the interface verification tests for each part of the rocket.
End-to-End Communications Testing
Integrated test of SLS core and upper stages, and Orion command and telemetry radio frequencies with mission control at NASA’s Johnson Space Center in Houston to demonstrate flight controllers’ ability to communicate with the ground systems and infrastructure. This test uses a radio frequency antenna in the Vehicle Assembly Building (VAB), another near the launch pad that will cover the first few minutes of launch, as well as a radio frequency that use the Tracking Data Relay Satellite and the Deep Space Network. Teams will do two versions of this test – one with the ground equipment communicating with a radio and telemetry station for checkouts, and one with all the hardware and equipment communicating with communications infrastructure like it will on launch day.
Countdown Demonstration Test
Teams will conduct a launch day demonstration with the Artemis II astronauts to test launch countdown procedures and make any final necessary adjustments ahead of launch. This test will be divided into two parts. The first will be conducted while SLS and Orion are in the VAB and include the Artemis II crew departing their crew quarters after suiting up at the Neil A. Armstrong Operations and Checkout Building and driving to the VAB where they will enter Orion like they will on launch day and practice getting strapped in. Part two will be completed once the rocket is at the launch pad and will allow the astronauts and Artemis launch team to practice how to use the emergency egress system, which would be used in the event of an unlikely emergency at the launch pad during launch countdown.
Flight Termination System End-to-End Test
Test to ensure the rocket’s flight termination system can be activated in the event of an emergency. For public safety, all rockets are required to have a flight termination system. This test will be divided into two parts inside the VAB. The first will take place ahead of Orion getting stacked atop SLS and the second will occur before the rocket and spacecraft roll out to the launch pad.
Wet Dress Rehearsal
Teams will practice loading cryogenic liquid propellant inside SLS once it’s at the launch pad and run through the launch countdown sequences just prior to engine ignition. The rehearsal will run the Artemis II launch team through operations to load liquid hydrogen and liquid oxygen into the rocket’s tanks, conduct a full launch countdown, demonstrate the ability to recycle the countdown clock, and also drain the tanks to give them an opportunity to practice the timelines and procedures they will use for launch.
Teams will load more than 700,000 gallons of cryogenic, or super cold, propellants into the rocket at the launch pad on the mobile launcher according to the detailed timeline they will use on the actual launch day. They will practice every phase of the countdown, including weather briefings, pre-planned holds in the countdown, conditioning and replenishing the propellants as needed, and validation checks. The Artemis II crew will not participate in the rehearsal.
View the full article
-
By NASA
Megan Harvey is a utilization flight lead and capsule communicator, or capcom, in the Research Integration Office at NASA’s Johnson Space Center in Houston. She integrates science payload constraints related to vehicles’ launch and landing schedules. She is also working to coordinate logistics for the return of SpaceX vehicles to West Coast landing sites.
Read on to learn about Harvey’s career with NASA and more!
Megan Harvey talking to a flight director from the Remote Interface Officer console in the Mission Control Center at NASA’s Johnson Space Center in Houston. NASA/Mark Sowa Johnson Space Center is home to the best teams, both on and off the planet!
Megan Harvey
Utilization Flight Lead and Capsule Communicator
Where are you from?
I am from Long Valley, New Jersey.
How would you describe your job to family or friends who may not be familiar with NASA?
Many biological experiments conducted on the space station have specific time constraints, including preparation on the ground and when crew interacts with them on orbit. I help coordinate and communicate those kinds of constraints within the International Space Station Program and with the scientific community. This is especially important because launch dates seldom stay where they are originally planned! I am also currently working in a cross-program team coordinating the logistics for the return to West Coast landings of SpaceX vehicles.
As a capcom, I’m the position in the Mission Control Center in Houston that talks to the crew. That would be me responding to someone saying, “Houston, we have a problem!”
I’ve worked in the Research Integration Office since the beginning of 2024 and have really enjoyed the change of pace after 11 years in the Flight Operations Directorate, where I supported several different consoles for the International Space Station. I’ve kept my capcom certification since 2021, and it is an absolute dream come true every time I get to sit in the International Space Station Flight Control Room. Johnson Space Center is home to the best teams, both on and off the planet!
How long have you been working for NASA?
I have been working for the agency for 13 years.
What advice would you give to young individuals aspiring to work in the space industry or at NASA?
Some things that I have found that helped me excel are:
1. Practice: I am surprised over and over again how simply practicing things makes you better at them, but it works!
2. Preparation: Don’t wing things!
3. Curiosity: Keep questioning!
4. Enthusiasm!
Megan Harvey and friends after biking 25 miles to work. What was your path to NASA?
I had a very circuitous path to NASA. Since going to Space Camp in Huntsville, Alabama, when I was 10 years old, I wanted to be a capcom and work for NASA. I also traveled to Russia in high school and loved it. I thought working on coordination between the Russian and U.S. space programs would be awesome. In pursuit of those dreams, I earned a bachelor’s degree in physics with a minor in Russian language from Kenyon College in Gambier, Ohio, but I had so much fun also participating in music extracurriculars that my grades were not quite up to the standards of working at NASA. After graduation, I worked at a technology camp for a summer and then received a research assistant position in a neuroscience lab at Princeton University in New Jersey.
After a year or so, I realized that independent research was not for me. I then worked in retail for a year before moving to California to be an instructor at Astrocamp, a year-round outdoor education camp. I taught a number of science classes, including astronomy, and had the opportunity to see the Perseverance Mars rover being put together at NASA’s Jet Propulsion Laboratory in Southern California. It dawned on me that I should start looking into aerospace-related graduate programs. After three years at Embry-Riddle in Daytona Beach, Florida, I received a master’s degree in engineering physics and a job offer for a flight control position, initially working for a subcontractor of United Space Alliance. I started in mission control as an attitude determination and control officer in 2012 and kept that certification until the end of 2023. Along the way, I was a Motion Control Group instructor; a Russian systems specialist and operations lead for the Houston Support Group working regularly in Moscow; a Remote Interface Officer (RIO); and supported capcom and the Vehicle Integrator team in a multipurpose support room for integration and systems engineers. I have to pinch myself when I think about how I somehow made my childhood dreams come true.
Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you?
After I switched offices to Houston Support Group/RIO, most of my training was led by Sergey Sverdlin. He was a real character. Despite his gruffness, he and I got along really well. We were very different people, but we truly respected each other. I was always impressed with him and sought out his approval.
Megan Harvey in Red Square in Moscow, Russia. What is your favorite NASA memory?
The most impactful experience I’ve had at NASA was working together with the Increment 68 leads during the days and months following the Soyuz coolant leak. I was increment lead RIO and just happened to be in the Increment Management Center the day of a planned Russian spacewalk. The increment lead RIO is not typically based in the Increment Management Center, but that day, things were not going well. All of our Russian colleagues had lost access to a critical network, and I was troubleshooting with the Increment Manager and the International Space Station Mission Management Team chair.
I was explaining to International Space Station Deputy Program Manager Dina Contella the plan for getting our colleagues access before their off-hours spacewalk when we saw a snowstorm of flakes coming out of the Soyuz on the downlink video on her office’s wall. Those flakes were the coolant. It was incredible watching Dina switch from winding down for the day to making phone call after phone call saying, “I am calling you in.” The Increment Management Center filled up and I didn’t leave until close to midnight that day. The rest of December was a flurry (no pun intended) of intense and meaningful work with the sharpest and most caring people I know.
What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth?
There is so much to talk about! I love giving insight into the complexities of not only the space station systems themselves, but also the international collaboration of all the teams working to keep the systems and the science running.
If you could have dinner with any astronaut, past or present, who would it be?
I would have dinner with Mae Jemison or Sally Ride. It’s too hard to pick!
Do you have a favorite space-related memory or moment that stands out to you?
I was selected by my management a few years ago to visit a Navy aircraft carrier with the SpaceX Crew-1 crew and some of the Crew-1 team leads. We did a trap landing on the deck and were launched off to go home, both via a C-2 Greyhound aircraft. It was mind blowing! I am also very lucky that I saw the last space shuttle launch from Florida when I was in graduate school.
Megan Harvey and NASA colleagues on the Nimitz aircraft carrier. What are some of the key projects you’ve worked on during your time at NASA? What have been your favorite?
My first increment lead role was RIO for Increment 59 and there was a major effort to update all our products in case of needing to decrew the space station. It was eye-opening to work with the entire increment team in this effort. I really enjoyed all the work and learning and getting to know my fellow increment leads better, including Flight Director Royce Renfrew.
Also, in 2021 I was assigned as the Integration Systems Engineer (ISE) lead for the Nanorack Airlock. I had never worked on a project with so many stakeholders before. I worked close to 100 revisions of the initial activation and checkout flowchart, coordinating with the entire flight control team. It was very cool to see the airlock extracted from NASA’s SpaceX Dragon trunk and installed, but it paled in comparison to the shift when we did the first airlock trash deploy. I supported as lead ISE, lead RIO, and capcom all from the capcom console, sitting next to the lead Flight Director TJ Creamer. I gave a countdown to the robotics operations systems officer commanding the deploy on the S/G loop so that the crew and flight control team could hear, “3, 2, 1, Engage!”
I’ll never forget the satisfaction of working through all the complications with that stellar team and getting to a successful result while also having so much fun.
Megan Harvey at a bouldering gym. What are your hobbies/things you enjoy outside of work?
I love biking, rock climbing, cooking, board games, and singing.
Day launch or night launch?
Night launch!
Favorite space movie?
Space Camp. It’s so silly. And it was the first DVD I ever bought!
NASA “worm” or “meatball” logo?
Worm
Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies.
Sign up for our weekly email newsletter to get the updates delivered directly to you.
Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.