Jump to content

Recommended Posts

  • Publishers
Posted
A picture of a massive, silver, statuesque piece of hardware inside a cavernous testing chamber. The image is mostly dark, with an illuminated section in the lower center half of the picture. The hardware has two large, vertical silver metal posts on either side of it, and two silver metal posts that cross horizontally between them. In the center of those posts is a large portion of silver thermal blanketing that is gathered toward the middle. White lights shine upward from the base of either side of the hardware. A line of six, small, white lights with a blueish starburst effect crown the hardware.
NASA

The instrument enclosure of NASA’s Near-Earth Object Surveyor is prepared for critical environmental tests inside the historic Chamber A at the Space Environment Simulation Laboratory at NASA’s Johnson Space Center in Houston in December 2024. Wrapped in silver thermal blanketing, the 12-foot-long (3.7-meter-long) angular structure was subjected to the frigid, airless conditions that the spacecraft will experience when in deep space. The cavernous thermal-vacuum test facility is famous for testing the Apollo spacecraft that traveled to the Moon in the 1960s and ’70s.

The instrument enclosure is designed to protect the spacecraft’s infrared telescope while also removing heat from it during operations. After environmental testing was completed, the enclosure returned to NASA’s Jet Propulsion Laboratory in Southern California for further work, after which it will ship to the Space Dynamics Laboratory (SDL) in Logan, Utah, and be joined to the telescope. Both the instrument enclosure and telescope were assembled at JPL.

As NASA’s first space-based detection mission specifically designed for planetary defense, NEO Surveyor will seek out, measure, and characterize the hardest-to-find asteroids and comets that might pose a hazard to Earth. While many near-Earth objects don’t reflect much visible light, they glow brightly in infrared light due to heating by the Sun. The spacecraft’s telescope, which has an aperture of nearly 20 inches (50 centimeters), features detectors sensitive to two infrared wavelengths in which near-Earth objects re-radiate solar heat.

More information about NEO Surveyor is available at: https://science.nasa.gov/mission/neo-surveyor/

Image credit: NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: First view of aerosols from MetOp Second Generation’s 3MI instrument View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Curiosity Blog, Sols 4641-4648: Thinking Outside and Inside the ‘Boxwork’
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Aug. 28, 2025 — Sol 4643, or Martian day 4,643 of the Mars Science Laboratory mission — at 20:45:52 UTC. NASA/JPL-Caltech Written by Ashley Stroupe, Mission Operations Engineer and Rover Planner at NASA’s Jet Propulsion Laboratory
      Earth planning week: Aug. 25, 2025.
      This week Curiosity has been exploring the boxwork unit, investigating both the ridges and the hollows to better characterize them and understand how they may have formed. We’ve been doing lots of remote science, contact science, and driving in each plan. In addition, we have our standard daily environmental observations to look at dust in the atmosphere. We can still see distant targets like the crater rim, but temperatures will soon begin to warm up as we start moving into a dustier part of the year. And after each drive, we also use AEGIS to do some autonomous target selection for ChemCam observations. I was the arm rover planner for the 4645-4648 plan on Friday.
      For Monday’s plan (sols 4641-4642), after a successful weekend drive Curiosity began on the edge of a boxwork ridge. We did a lot of imaging, including Mastcam mosaics of “El Alto,” an upturned rock near a wheel, the ridge forming the south side of the Mojo hollow, “Sauces,” our contact science target, and “Navidad,” an extension of our current workspace. We also took ChemCam LIBS of Sauces and an RMI mosaic. The rover planners did not find any bedrock large enough to brush, but did MAHLI and APXS on Sauces. Ready to drive, Curiosity drove about 15 meters (about 49 feet) around the ridge to the south and into the next hollow, named “Mojo.” 
      In Wednesday’s plan (sols 4643-4644), Curiosity was successfully parked in the Mojo hollow. We started with a lot of imaging, including Mastcam mosaics of the ridges around the Mojo hollow, a nearby trough and the hollow floor to look for regolith movement. We also imaged a fractured float rock named “La Laguna Verde.” ChemCam planned a LIBS target on “Corani,” a thin resistant clast sticking out of the regolith, a RMI mosaic of a target on the north ridge named “Cocotoni,” and a long-distance RMI mosaic of “Babati Mons,” a mound about 100 kilometers (about 62 miles) away that we can see peeking over the rim of Gale crater! With no bedrock in the workspace, the rover planners did MAHLI and APXS observations on a regolith target named “Tarapacá.” The 12-meter drive in this plan (about 39 feet) was challenging; driving out of the hollow and up onto the ridge required the rover to overcome tilts above 20 degrees, where the rover can experience a lot of slip. Also, with the drive late in the day, it was challenging to determine where Curiosity should be looking to track her slip using Visual Odometry without getting blinded by the sun or losing features in shadows. Making sure VO works well is particularly important on drives like this when we expect a lot of slip. 
      Friday’s plan, like most weekend plans, was more complex — particularly because this four-sol plan also covers the Labor Day holiday on Monday. Fortunately, the Wednesday drive was successful, and we reached the desired parking location on the ridge south of Mojo for imaging and contact science. The included image looks back over the rover’s shoulder, where we can see the ridge and hollow. We took a lot of imaging looking at hollows and the associated ridges. We are taking a Mastcam mosaic of “Jorginho Cove,” a target covering the ridge we are parked on and the next hollow to the south, “Pica,” a float rock that is grayish in color, and a ridge/hollow pair named “Laguna Colorada.” We also take ChemCam LIBS observations of Pica and two light-toned pieces of bedrock named “Tin Tin” and ”Olca.” ChemCam takes RMI observations of “Briones,” which is a channel on the crater rim, “La Serena,” some linear features in the crater wall, and a channel that feeds into the Peace Vallis fan. 
      After a week of fairly simple arm targets, the rover planners had a real challenge with this workspace. The rocks were mostly too small and too rough to brush, but we did find one spot after a lot of looking. We did DRT, APXS, and MAHLI on this spot, named “San Jose,” and also did MAHLI and APXS on another rock named “Malla Qullu.” This last drive of the week is about 15 meters (about 49 feet) following along a ridge and then driving onto a nearby one.

      Want to read more posts from the Curiosity team?



      Visit Mission Updates


      Want to learn more about Curiosity’s science instruments?



      Visit the Science Instruments page


      NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








      Details
      Last Updated Sep 04, 2025 Related Terms
      Blogs Explore More
      2 min read Over Soroya Ridge & Onward!


      Article


      1 week ago
      3 min read Curiosity Blog, Sols 4638-4640: Imaging Extravaganza Atop a Ridge


      Article


      1 week ago
      3 min read To See the World in a Grain of Sand: Investigating Megaripples at ‘Kerrlaguna’


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      3 Min Read Inside NASA’s New Orion Mission Evaluation Room for Artemis II 
      As NASA’s Orion spacecraft is carrying crew around the Moon on the Artemis II mission, a team of expert engineers in the Mission Control Center at NASA’s Johnson Space Center in Houston will be meticulously monitoring the spacecraft along its journey. They’ll be operating from a new space in the mission control complex built to host the Orion Mission Evaluation Room (MER). Through the success of Orion and the Artemis missions, NASA will return humanity to the Moon and prepare to land an American on the surface of Mars.

      Inside the Mission Evaluation Room, dozens of engineers will be monitoring the spacecraft and collecting data, while the flight control team located in mission control’s White Flight Control Room is simultaneously operating and sending commands to Orion during the flight. The flight control team will rely on the engineering expertise of the evaluation room to help with unexpected spacecraft behaviors that may arise during the mission and help analyze Orion’s performance data.

      The new Orion Mission Evaluation Room inside the Mission Control Center at NASA’s Johnson Space Center in Houston.NASA/Rad Sinyak The Mission Evaluation Room team is made up of engineers from NASA, Lockheed Martin, ESA (European Space Agency), and Airbus who bring deep, expert knowledge of the spacecraft’s subsystems and functions to the mission. These functions are represented across 24 consoles, usually staffed by two engineers in their respective discipline, often hosting additional support personnel during planned dynamic phases of the mission or test objectives.
      “The operations team is flying the spacecraft, but they are relying on the Mission Evaluation Room’s reachback engineering capability from the NASA, industry, and international Orion team that has designed, built, and tested this spacecraft.”
      Trey PerrymAn
      Lead for Orion Mission and Integration Systems at NASA Johnson
      Perryman guides the Artemis II Orion mission evaluation room alongside Jen Madsen, deputy manager for Orion’s Avionics, Power, and Software.

      With crew aboard, Orion will put more systems to the test, requiring more expertise to monitor new systems not previously flown. To support these needs, and safe, successful flights of Orion to the Moon, NASA officially opened the all-new facility in mission control to host the Orion Mission Evaluation Room on Aug. 15.
      The Orion Mission Evaluation Room team works during an Artemis II mission simulation on Aug. 19, 2025, from the new space inside the Mission Control Center at NASA’s Johnson Space Center in Houston.NASA/Rad Sinyak During Artemis II, the evaluation room will operate in three daily shifts, beginning about 48 hours prior to liftoff. The room is staffed around the clock throughout the nearly 10 day mission, up until the spacecraft has been safely secured inside the U.S. Navy ship that will recover it after splashdown.

      Another key function of the evaluation room is collecting and analyzing the large amount of data Orion will produce during the flight, which will help inform the room’s team on the spacecraft’s performance.

      “Data collection is hugely significant,” Perryman said. “We’ll do an analysis and assessment of all the data we’ve collected, and compare it against what we were expecting from the spacecraft. While a lot of that data comparison will take place during the mission, we’ll also do deeper analysis after the mission is over to see what we learned.”

      The Orion Mission Evaluation Room team works during an Artemis II mission simulation on Aug. 19, 2025, from the new space inside the Mission Control Center at NASA’s Johnson Space Center in Houston.NASA/Rad Sinyak If unplanned situations arise during the mission, the Mission Evaluation Room has additional layers of ability to support any specific need that presents itself.  This includes various engineering support from different NASA centers, Lockheed Martin’s Integrated Test Lab, ESA’s European Space Research and Technology Center, and more.
      “It’s been amazing to have helped design and build Orion from the beginning – and now, we’ll be able to see the culmination of all those years of work in this new Mission Evaluation Room."
      Jen Madsen
      Deputy Manager for Orion’s Avionics, Power, and Software
      “We’ll see our spacecraft carrying our crew to the Moon on these screens and still be continuously learning about all of its capabilities,” said Madsen.

      The Artemis II test flight will send NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen around the Moon and return them safely back home. This first crewed flight under NASA’s Artemis campaign will set the stage for NASA to return Americans to the lunar surface and help the agency and its commercial and international partners prepare for future human missions to Mars.
      The Orion Mission Evaluation Room Team gathers for a group photo on Aug. 18, 2025.NASA/Josh Valcarcel Share
      Details
      Last Updated Aug 26, 2025 Related Terms
      Orion Multi-Purpose Crew Vehicle Artemis Artemis 2 Johnson Space Center Johnson's Mission Control Center Orion Program Explore More
      3 min read Lindy Garay: Supporting Space Station Safety and Success
      Article 1 day ago 3 min read NASA Shares Final Contenders for Artemis II Moon Mascot Design Contest
      Article 4 days ago 5 min read NASA’s Bennu Samples Reveal Complex Origins, Dramatic Transformation
      Asteroid Bennu, sampled by NASA’s OSIRIS-REx mission in 2020, is a mixture of dust that…
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: The development of ESA’s Earth Explorer FLEX mission has recently passed a significant milestone: the mission’s all-important instrument has been joined to its satellite platform. View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Europa Clipper’s radar instrument received echoes of its very-high-frequency radar signals that bounced off Mars and were processed to develop this radargram. What looks like a skyline is the outline of the topography beneath the spacecraft.NASA/JPL-Caltech/UT-Austin The agency’s largest interplanetary probe tested its radar during a Mars flyby. The results include a detailed image and bode well for the mission at Jupiter’s moon Europa.
      As it soared past Mars in March, NASA’s Europa Clipper conducted a critical radar test that had been impossible to accomplish on Earth. Now that mission scientists have studied the full stream of data, they can declare success: The radar performed just as expected, bouncing and receiving signals off the region around Mars’ equator without a hitch.
      Called REASON (Radar for Europa Assessment and Sounding: Ocean to Near-surface), the radar instrument will “see” into Europa’s icy shell, which may have pockets of water inside. The radar may even be able to detect the ocean beneath the shell of Jupiter’s fourth-largest moon.
      “We got everything out of the flyby that we dreamed,” said Don Blankenship, principal investigator of the radar instrument, of the University of Texas at Austin. “The goal was to determine the radar’s readiness for the Europa mission, and it worked. Every part of the instrument proved itself to do exactly what we intended.”
      In this artist’s concept, Europa Clipper’s radar antennas — seen at the lower edge of the solar panels — are fully deployed. The antennas are key components of the spacecraft’s radar instrument, called REASON.NASA/JPL-Caltech The radar will help scientists understand how the ice may capture materials from the ocean and transfer them to the surface of the moon. Above ground, the instrument will help to study elements of Europa’s topography, such as ridges, so scientists can examine how they relate to features that REASON images beneath the surface.
      Limits of Earth
      Europa Clipper has an unusual radar setup for an interplanetary spacecraft: REASON uses two pairs of slender antennas that jut out from the solar arrays, spanning a distance of about 58 feet (17.6 meters). Those arrays themselves are huge — from tip to tip, the size of a basketball court — so they can catch as much light as possible at Europa, which gets about 1/25th the sunlight as Earth.
      The instrument team conducted all the testing that was possible prior to the spacecraft’s launch from NASA’s Kennedy Space Center in Florida on Oct. 14, 2024. During development, engineers at the agency’s Jet Propulsion Laboratory in Southern California even took the work outdoors, using open-air towers on a plateau above JPL to stretch out and test engineering models of the instrument’s spindly high-frequency and more compact very-high-frequency antennas.
      But once the actual flight hardware was built, it needed to be kept sterile and could be tested only in an enclosed area. Engineers used the giant High Bay 1 clean room at JPL, where the spacecraft was assembled, to test the instrument piece by piece. To test the “echo,” or the bounceback of REASON’s signals, however, they’d have needed a chamber about 250 feet (76 meters) long — nearly three-quarters the length of a football field.
      Enter Mars
      The mission’s primary goal in flying by Mars on March 1, less than five months after launch, was to use the planet’s gravitational pull to reshape the spacecraft’s trajectory. But it also presented opportunities to calibrate the spacecraft’s infrared camera and perform a dry run of the radar instrument over terrain NASA scientists have been studying for decades.
      As Europa Clipper zipped by the volcanic plains of the Red Planet — starting at 3,100 miles (5,000 kilometers) down to 550 miles (884 kilometers) above the surface — REASON sent and received radio waves for about 40 minutes. In comparison, at Europa the instrument will operate as close as 16 miles (25 kilometers) from the moon’s surface.
      All told, engineers were able to collect 60 gigabytes of rich data from the instrument. Almost immediately, they could tell REASON was working well. The flight team scheduled the full dataset to download, starting in mid-May. Scientists relished the opportunity over the next couple of months to examine the information in detail and compare notes. 
      “The engineers were excited that their test worked so perfectly,” said JPL’s Trina Ray, Europa Clipper deputy science manager. “All of us who had worked so hard to make this test happen — and the scientists seeing the data for the first time — were ecstatic, saying, ‘Oh, look at this! Oh, look at that!’ Now, the science team is getting a head start on learning how to process the data and understand the instrument’s behavior compared to models. They are exercising those muscles just like they will out at Europa.” 
      Europa Clipper’s total journey to reach the icy moon will be about 1.8 billion miles (2.9 billion kilometers) and includes one more gravity assist — using Earth — in 2026. The spacecraft is currently about 280 million miles (450 million kilometers) from Earth.
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory in Southern California leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at NASA Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at NASA Kennedy, managed the launch service for the Europa Clipper spacecraft. The REASON radar investigation is led by the University of Texas at Austin.
      Find more information about Europa Clipper here:
      https://science.nasa.gov/mission/europa-clipper/
      Check out Europa Clipper's Mars flyby in 3D News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.govt
      2025-097
      Share
      Details
      Last Updated Aug 01, 2025 Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
      6 min read How Joint NASA-ESA Sea Level Mission Will Help Hurricane Forecasts
      Article 2 hours ago 5 min read How NASA Is Testing AI to Make Earth-Observing Satellites Smarter
      Article 1 week ago 5 min read NASA Shares How to Save Camera 370-Million-Miles Away Near Jupiter
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...