Members Can Post Anonymously On This Site
Farewell, Gaia! Spacecraft operations come to an end
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Researchers in the Verification and Validation Lab at NASA’s Ames Research Center in California’s Silicon Valley monitor a simulated drone’s flight path during a test of the FUSE demonstration.NASA/Brandon Torres Navarrete Through an ongoing collaboration, NASA and the Department of War are working to advance the future of modern drones to support long distance cargo transportation that could increase efficiency, reduce human workload, and enhance safety.
Researchers from NASA’s Ames Research Center in California’s Silicon Valley recently participated in a live flight demonstration showcasing how drones can successfully fly without their operators being able to see them, a concept known as beyond visual line of sight (BVLOS).
Cargo drones, a type of Unmanned Aerial Systems (UAS), carried various payloads more than 75 miles across North Dakota, between Grand Forks Air Force Base and Cavalier Space Force Station. This demonstration was conducted as part of the War Department’s UAS Logistics, Traffic, Research, and Autonomy (ULTRA) effort.
NASA’s UAS Service Supplier (USS) technology helped to demonstrate that cargo drones could operate safely even in complex, shared airspace. During the tests, flight data including location, altitude, and other critical data were transmitted live to the NASA system, ensuring full situational awareness throughout the demonstration.
Terrence Lewis and Sheryl Jurcak, members of the FUSE project team at NASA Ames, discuss the monitoring efforts of the FUSE demonstration at the Airspace Operations Lab. NASA/Brandon Torres Navarrete The collaboration between NASA and the Department of War is known as the Federal USS Synthesis Effort (FUSE). The demonstration allowed FUSE researchers to test real-time tracking, situational awareness, and other factors important to safely integrating of drone traffic management into U.S. national airspace. The FUSE work marks an important step towards routine, scalable autonomous cargo drone operations and broader use for future military logistics.
“NASA and the Department of War have a long and storied partnership, collaborating with one another to contribute to continued advancement of shared American ideals,” said Todd Ericson, senior advisor to the NASA administrator. “FUSE builds upon our interagency cooperation to contribute enhanced capabilities for drones flying beyond the visual line of sight. This mission is the next big step toward true autonomous flight and will yield valuable insights that we can leverage as both the commercial drone, cargo and urban air taxi industries continue to expand and innovate. As always, safety is of paramount importance at NASA, and we are working with our partners at the FAA and Department of Transportation to ensure we regulate this appropriately.”
Autonomous and semi-autonomous drones could potentially support a broad range of tasks for commercial, military, and private users. They could transport critical medical supplies to remote locations, monitor wildfires from above, allow customers to receive deliveries directly in their backyards. NASA is researching technology to further develop the infrastructure needed for these operations to take place safely and effectively, without disrupting the existing U.S. airspace.
“This system is crucial for enabling safe, routine BVLOS operations,” said Terrence Lewis, FUSE project manager at NASA Ames. “It ensures all stakeholders can see and respond to drone activity, which provides the operator with greater situational awareness.”
NASA Ames is collaborating on the FUSE project with the War Department’s Office of the Undersecretary of War for Acquisition and Sustainment. The NASA FUSE effort is also collaborating with ULTRA, a multi-entity partnership including the Office of the Secretary of War, the County of Grand Forks, the Northern Plains UAS Test Site, the Grand Sky Development, the Air Force Research Laboratory, and several other commercial partners, aiming to bolster capabilities within the National Airspace System.
Share
Details
Last Updated Sep 12, 2025 Related Terms
Ames Research Center Aeronautics Aeronautics Research General Explore More
5 min read NASA’s X-59 Moves Toward First Flight at Speed of Safety
Article 5 minutes ago 1 min read Drag Prediction Workshop Series
Article 8 hours ago 2 min read NASA Ames Science Directorate: Stars of the Month – September 2025
Article 23 hours ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
The Artemis I SLS (Space Launch System) rocket and Orion spacecraft is pictured in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida before rollout to launch pad 39B, in March 2022.Credit: NASA/Frank Michaux Media are invited to see NASA’s fully assembled Artemis II SLS (Space Launch System) rocket and Orion spacecraft in mid-October before its crewed test flight around the Moon next year.
The event at NASA’s Kennedy Space Center in Florida will showcase hardware for the Artemis II lunar mission, which will test capabilities needed for deep space exploration. NASA and industry subject matter experts will be available for interviews.
Attendance is open to U.S. citizens and international media. Media accreditation deadlines are as follows:
International media without U.S. citizenship must apply by 11:59 p.m. EDT on Monday, Sept. 22. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. EDT on Monday, Sept. 29. Media wishing to take part in person must apply for credentials at:
https://media.ksc.nasa.gov
Credentialed media will receive a confirmation email upon approval, along with additional information about the specific date for the mid-October activities when they are determined. NASA’s media accreditation policy is available online. For questions about accreditation, please email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact the NASA Kennedy newsroom at: 321-867-2468.
Prior to the media event, the Orion spacecraft will transition from the Launch Abort System Facility to the Vehicle Assembly Building at NASA Kennedy, where it will be placed on top of the SLS rocket. The fully stacked rocket will then undergo complete integrated testing and final hardware closeouts ahead of rolling the rocket to Launch Pad 39B for launch. During this effort, technicians will conduct end-to-end communications checkouts, and the crew will practice day of launch procedures during their countdown demonstration test.
Artemis II will send NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen on an approximately 10-day journey around the Moon and back. As part of a Golden Age of innovation and exploration, Artemis will pave the way for new U.S.-crewed missions on the lunar surface ahead in preparation toward the first crewed mission to Mars.
To learn more about the Artemis II mission, visit:
https://www.nasa.gov/mission/artemis-ii
-end-
Rachel Kraft / Lauren Low
Headquarters, Washington
202-358-1100
rachel.h.kraft@nasa.gov / lauren.e.low@nasa.gov
Tiffany Fairley
Kennedy Space Center, Fla.
321-867-2468
tiffany.l.fairley@nasa.gov
Share
Details
Last Updated Sep 10, 2025 LocationNASA Headquarters Related Terms
Artemis 2 Artemis Orion Multi-Purpose Crew Vehicle Space Launch System (SLS) View the full article
-
By NASA
Credit: NASA NASA has awarded ASCEND Aerospace & Technology of Cape Canaveral, Florida, the Contract for Organizing Spaceflight Mission Operations and Systems (COSMOS), to provide services at the agency’s Johnson Space Center in Houston.
The COSMOS is a single award, indefinite-delivery/indefinite-quantity contract valued at $1.8 billion that begins its five-year base period no earlier than Dec. 1, with two option periods that could extend until 2034. The Aerodyne Company of Cape Canaveral, Florida, and Jacobs Technology Company of Tullahoma, Tennessee, are joint venture partners.
Work performed under the contract will support NASA’s Flight Operation Directorate including the Orion and Space Launch System Programs, the International Space Station, Commercial Crew Program, and the Artemis campaign. Services include Mission Control Center systems, training systems, mockup environments, and training for astronauts, instructors, and flight controllers.
For more information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Chelsey Ballarte
Johnson Space Center, Houston
281-483-5111
chelsey.n.ballarte@nasa.gov
Share
Details
Last Updated Aug 28, 2025 LocationNASA Headquarters Related Terms
Johnson Space Center Artemis Commercial Crew International Space Station (ISS) ISS Research Johnson Flight Operations Space Launch System (SLS) View the full article
-
By Space Force
The USSF and nine partner nations concluded Schriever Wargame 2025, capping a two-week wargame that tested strategies, evaluated future technologies and strengthened international cooperation in space.
View the full article
-
By NASA
Think of NASA’s Stennis Space Center, and one likely thinks of rocket propulsion testing. The site has a long history of testing to support the nation’s space efforts, including the current Artemis program to send astronauts to the Moon to prepare for future human exploration of Mars.
However, NASA Stennis also is working to become a key supporter of more terrestrial exploration. Indeed, in terms of unmanned range operations, NASA Stennis has it all – layers of restricted airspace, a closed canal system, and acres upon acres of protected terrain.
Field TestU.S. Naval Research Laboratory personnel conduct a field experiment involving an unmanned aerial system at NASA Stennis in March 2024. (NASA/Danny Nowlin)NASA/Danny Nowlin Marine OperationU.S. Naval Research laboratory personnel conduct tests on The Blue Boat made by Blue Robotics, an unmanned surface vessel, at NOAA’s National Data Buoy Center basin at NASA Stennis on Dec. 19, 2024.NASA/Danny Nowlin Bird’s-Eye ViewAn unmanned aerial system provides a bird’s-eye view of an RS-25 on Feb. 22, 2024, on the Fred Haise Test Stand at NASA Stennis. NASA The NASA site near Bay St. Louis, Mississippi, is an ideal location for all types of air, marine, and ground testing, said Range Operations Manager Jason Peterson. “My job is to understand the customer, and their requirements and limitations, to help them succeed,” he added. “What makes NASA Stennis unique is our federally protected area for users to operate.”
The need to learn about unmanned systems, such as drones or underwater vehicles, in a safe environment is growing as technology advances. Think of it like learning to drive a car in a parking lot before hitting the road.
NASA Stennis has already begun leveraging these capabilities. In 2024, the center established an agreement with Skydweller Aero Inc. to utilize restricted airspace for flight testing of autonomous, solar-powered aircraft. This first-of-its-kind agreement paves the way for future collaborations as NASA Stennis expands its customer-based operations beyond onsite tenants.
An unmanned aerial system provides a panoramic view of the NASA Stennis test complex and canal system. NASA Look to the Sky
NASA Stennis has its own protected airspace, similar to how airports control the skies around them. The Federal Aviation Administration (FAA) first established this restricted airspace in 1966 and expanded it in 2016 to support both NASA missions and U.S. Department of Defense operations.
NASA Stennis is one of only two non-military restricted airspaces in the nation. It operates two main airspace zones – a propulsion testing area extending from ground level up to 12,000 feet for safely testing rocket engines without interfering with regular air traffic, and an aircraft operations zone covering 100 square miles up to 6,000 feet, with 15 dedicated acres for drone launch and recovery.
NASA Stennis staff provide comprehensive support including safety reviews, coordination between aircraft operators and FAA air traffic controllers, and constant communication with range safety personnel to ensure all operations are conducted safely.
Marine Operations
The centerpiece of the NASA Stennis marine range is its extensive 7.5-mile canal system, protected by a lock-and-dam system that connects to Pearl River tributaries. This network accommodates various marine platforms including traditional watercraft, autonomous underwater vehicles, remotely operated vehicles, unmanned surface vessels, and aerial drones requiring water landing capabilities.
The controlled environment provides protection from adverse weather and interference, making it ideal for testing sensitive or proprietary technologies. The facility is particularly valuable for emerging technologies in autonomous systems, sensor integration, and multi-domain operations where air, surface, and underwater platforms operate in coordination.
Ground Level
NASA Stennis facilities are located on 13,800 acres of fenced-in property, surrounded by an additional 125,000 acres of protected land known as the acoustical buffer zone. This area was established primarily through permanent lease to allow testing of large rocket hardware without disturbing area residents and is closely monitored without permanent habitable structures.
“The location helps reduce hazards to the public when testing new technology,” Peterson said. “With supporting infrastructure for office space, storage, or manufacturing, this makes NASA Stennis a great place to test, train, operate, and even manufacture.”
The NASA Stennis federal city already hosts more than 50 federal, state, academic, public, and private aerospace, technology, and research organizations, with room for more. All tenants share operating costs while pursuing individual missions.
‘Open for Business’
NASA Stennis leaders are keenly aware of the opportunity such unique capabilities afford. The center’s 2024-2028 strategic plan states NASA Stennis will leverage these unique capabilities to support testing and operation of uncrewed systems.
Leaders are working to identify opportunities to maximize site capabilities and develop an effective business model. “NASA Stennis is open for business, and we want to provide a user-friendly range for operators to test vehicles by creating an environment that is safe, cost-effective, and focused on mission success,” Peterson said.
For information about range operations at NASA’s Stennis Space Center, visit:
Range and Airspace Operations – NASA
For information about Stennis Space Center, visit:
https://www.nasa.gov/stennis
Share
Details
Last Updated Aug 25, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center Explore More
10 min read NASA’s Stennis Space Center Employees Receive NASA Honor Awards
Article 2 weeks ago 6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
Article 3 months ago 4 min read NASA Stennis Releases First Open-Source Software
Article 4 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.