Jump to content

Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Yellow Coreopsis gigantea flowers during field work
Researcher Ann Raiho measures sunlight interacting with yellow Coreopsis gigantea flowers during field work in the Jack and Laura Dangermond Preserve in California’s Santa Barbara County in 2022.
NASA/Yoseline Angel

For many plant species, flowering is biologically synced with the seasons. Scientists are clocking blooms to understand our ever-changing planet.

NASA research is revealing there’s more to flowers than meets the human eye. A recent analysis of wildflowers in California shows how aircraft- and space-based instruments can use color to track seasonal flower cycles. The results suggest a potential new tool for farmers and natural-resource managers who rely on flowering plants.

In their study, the scientists surveyed thousands of acres of nature preserve using a technology built by NASA’s Jet Propulsion Laboratory in Southern California. The instrument — an imaging spectrometer — mapped the landscape in hundreds of wavelengths of light, capturing flowers as they blossomed and aged over the course of months.

It was the first time the instrument had been deployed to track vegetation steadily through the growing season, making this a “first-of-a-kind study,” said David Schimel, a research scientist at JPL.

A diagram shows an airplane flying over a landscape with a yellow cone representing data collection. Below, a 3D block represents the landscape with stacked color layers labeled B, G, R, and NIR. A ruler indicates 5m.
In this illustration, an imaging spectrometer aboard a research plane measures sunlight reflecting off California coastal scrub. In the data cube below, the top panel shows the true-color view of the area. Lower panels depict the spectral fingerprint for every point in the image, capturing the visible range of light (blue, green, and red wavelengths) to the near-infrared (NIR) and beyond. Spatial resolution is around 16 feet (5 meters).
NASA

For many plant species from crops to cacti, flowering is timed to seasonal swings in temperature, daylight, and precipitation. Scientists are taking a closer look at the relationship between plant life and seasons — known as vegetation phenology — to understand how rising temperatures and changing rainfall patterns may be impacting ecosystems.

Typically, wildflower surveys rely on boots-on-the-ground observations and tools such as time-lapse photography. But these approaches cannot capture broader changes that may be happening in different ecosystems around the globe, said lead author Yoseline Angel, a scientist at the University of Maryland-College Park and NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

“One challenge is that compared to leaves or other parts of a plant, flowers can be pretty ephemeral,” she said. “They may last only a few weeks.”

To track blooms on a large scale, Angel and other NASA scientists are looking to one of the signature qualities of flowers: color.

NASA’s AVIRIS sensors
NASA’s AVIRIS sensors have been used to study wildfires, World Trade Center wreckage, and critical minerals, among numerous airborne missions over the years. AVIRIS-3 is seen here on a field campaign in Panama, where it helped analyze vegetation in many wavelengths of light not visible to human eyes.
NASA/Shawn Serbin

Mapping Native Shrubs

Flower pigments fall into three major groups: carotenoids and betalains (associated with yellow, orange, and red colors), and anthocyanins (responsible for many deep reds, violets, and blues). The different chemical structures of the pigments reflect and absorb light in unique patterns.

Spectrometers allow scientists to analyze the patterns and catalog plant species by their chemical “fingerprint.” As all molecules reflect and absorb a unique pattern of light, spectrometers can identify a wide range of biological substances, minerals, and gases.

Handheld devices are used to analyze samples in the field or lab. To survey moons and planets, including Earth, NASA has developed increasingly powerful imaging spectrometers over the past 45 years.

One such instrument is called AVIRIS-NG (short for Airborne Visible/InfraRed Imaging Spectrometer-Next Generation), which was built by JPL to fly on aircraft. In 2022 it was used in a large ecology field campaign to survey vegetation in the Jack and Laura Dangermond Preserve and the Sedgwick Reserve, both in Santa Barbara County. Among the plants observed were two native shrub species — Coreopsis gigantea and Artemisia californica — from February to June.

The scientists developed a method to tease out the spectral fingerprint of the flowers from other landscape features that crowded their image pixels. In fact, they were able to capture 97% of the subtle spectral differences among flowers, leaves, and background cover (soil and shadows) and identify different flowering stages with 80% certainty.

Predicting Superblooms

The results open the door to more air- and space-based studies of flowering plants, which represent about 90% of all plant species on land. One of the ultimate goals, Angel said, would be to support farmers and natural resource managers who depend on these species along with insects and other pollinators in their midst. Fruit, nuts, many medicines, and cotton are a few of the commodities produced from flowering plants.

Angel is working with new data collected by AVIRIS’ sister spectrometer that orbits on the International Space Station. Called EMIT (Earth Surface Mineral Dust Source Investigation), it was designed to map minerals around Earth’s arid regions. Combining its data with other environmental observations could help scientists study superblooms, a phenomenon where vast patches of desert flowers bloom after heavy rains.

One of the delights of researching flowers, Angel said, is the enthusiasm from citizen scientists. “I have social media alerts on my phone,” she added, noting one way she stays on top of wildflower activity around the world.

The wildflower study was supported as part of the Surface Biology and Geology High-Frequency Time Series (SHIFT) campaign. An airborne and field research effort, SHIFT was jointly led by the Nature Conservancy, the University of California, Santa Barbara, and JPL. Caltech, in Pasadena, manages JPL for NASA.

The AVIRIS instrument was originally developed through funding from NASA’s Earth Science Technology Office.

News Media Contacts

Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

Written by Sally Younger

2025-041

Share

Details

Last Updated
Mar 24, 2025

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronauts (left to right) Anne McClain and Nichole Ayers pose for a portrait together aboard the International Space Station. Moments earlier, Ayers finished trimming McClain’s hair using an electric razor with a suction hose attached that collects the loose hair to protect the station’s atmosphere.NASA Students from New York and Utah will hear from NASA astronauts aboard the International Space Station as they answer prerecorded questions in two separate events.
      At 11:30 a.m. EDT on Monday, June 23, NASA astronauts Nichole Ayers and Anne McClain will answer questions submitted by students from P.S. 71 Forest Elementary School in Ridgewood, New York. Media interested in covering the event must RSVP by 5 p.m. Friday, June 20, to Regina Beshay at: rbeshay2@school.nyc.gov or 347-740-6165.
      At 11:05 a.m. on Friday, June 27, Ayers and McClain will answer questions submitted by students from Douglas Space and Science Foundation, Inc., in Layton, Utah. Media interested in covering the event must RSVP by 5 p.m. Wednesday, June 25, to Sarah Merrill at: sarahmonique@gmail.com or 805-743-3341.
      Watch the 20-minute Earth-to-space calls on NASA STEM YouTube Channel.
      P.S. 71 Forest Elementary School will host kindergarten through fifth grade students. Douglas Space and Science Foundation will host participants from the Science, Technology, Achievement Research camp. Both events aim to inspire students to imagine a future in science, technology, engineering, and mathematics careers through ongoing collaborations, mentorship, and hands-on learning experiences.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jun 18, 2025 LocationNASA Headquarters Related Terms
      Humans in Space In-flight Education Downlinks International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      NASA/Charles Beason Two students guide their rover through an obstacle course in this April 11, 2025, image from the 2025 Human Exploration Rover Challenge. The annual engineering competition – one of NASA’s longest standing student challenges – is in its 31st year. This year’s competition challenged teams to design, build, and test a lunar rover powered by either human pilots or remote control. More than 500 students with 75 teams from around the world participated, representing 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations.
      See the 2025 winners.
      Image credit: NASA/Charles Beason
      View the full article
    • By NASA
      4 Min Read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      During the September 2023 daytime reentry of the OSIRIS-REx sample return capsule, the SCIFLI team captured visual data similar to what they're aiming to capture during Mission Possible. Credits: NASA/SCIFLI A NASA team specializing in collecting imagery-based engineering datasets from spacecraft during launch and reentry is supporting a European aerospace company’s upcoming mission to return a subscale demonstration capsule from space.
      NASA’s Scientifically Calibrated In-Flight Imagery (SCIFLI) team supports a broad range of mission needs across the agency, including Artemis, science missions like OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), and NASA’s Commercial Crew Program. The SCIFLI team also supports other commercial space efforts, helping to develop and strengthen public-private partnerships as NASA works to advance exploration, further cooperation, and open space to more science, people, and opportunities.

      Later this month, SCIFLI intends to gather data on The Exploration Company’s Mission Possible capsule as it returns to Earth following the launch on a SpaceX Falcon 9 rocket. One of the key instruments SCIFLI will employ is a spectrometer detects light radiating from the capsule’s surface, which researchers can use to determine the surface temperature of the spacecraft. Traditionally, much of this data comes from advanced Computational Fluid Dynamics modeling of what happens when objects of various sizes, shapes, and materials enter different atmospheres, such as those on Earth, Mars, or Venus.
      “While very powerful, there is still some uncertainty in these Computational Fluid Dynamics models. Real-world measurements made by the SCIFLI team help NASA researchers refine their models, meaning better performance for sustained flight, higher safety margins for crew returning from the Moon or Mars, or landing more mass safely while exploring other planets,” said Carey Scott, SCIFLI capability lead at NASA’s Langley Research Center in Hampton, Virginia.
      A rendering of a space capsule from The Exploration Company re-entering Earth’s atmosphere.
      Image courtesy of The Exploration CompanyThe Exploration Company The SCIFLI team will be staged in Hawaii and will fly aboard an agency Gulfstream III aircraft during the re-entry of Mission Possible over the Pacific Ocean.
      “The data will provide The Exploration Company with a little bit of redundancy and a different perspective — a decoupled data package, if you will — from their onboard sensors,” said Scott.
      From the Gulfstream, SCIFLI will have the spectrometer and an ultra-high-definition telescope trained on Mission Possible. The observation may be challenging since the team will be tracking the capsule against the bright daytime sky. Researchers expect to be able to acquire the capsule shortly after entry interface, the point at roughly 200,000 feet, where the atmosphere becomes thick enough to begin interacting with a capsule, producing compressive effects such as heating, a shock layer, and the emission of photons, or light.
      Real-world measurements made by the SCIFLI team help NASA researchers refine their models, meaning better performance for sustained flight, higher safety margins for crew returning from the Moon or Mars, or landing more mass safely while exploring other planets.
      Carey Scott
      SCIFLI Capability Lead

      In addition to spectrometer data on Mission Possible’s thermal protection system, SCIFLI will capture imagery of the parachute system opening. First, a small drogue chute deploys to slow the capsule from supersonic to subsonic, followed by the deployment of a main parachute. Lastly, cloud-cover permitting, the team plans to image splashdown in the Pacific, which will help a recovery vessel reach the capsule as quickly as possible.
      If flying over the ocean and capturing imagery of a small capsule as it zips through the atmosphere during the day sounds difficult, it is. But this mission, like all SCIFLI’s assignments, has been carefully modeled, choreographed, and rehearsed in the months and weeks leading up to the mission. There will even be a full-dress rehearsal in the days just before launch.
      Not that there aren’t always a few anxious moments right as the entry interface is imminent and the team is looking out for its target. According to Scott, once the target is acquired, the SCIFLI team has its procedures nailed down to a — pardon the pun — science.
      “We rehearse, and we rehearse, and we rehearse until it’s almost memorized,” he said.
      Ari Haven, left, asset coodinator for SCIFLI’s support of Mission Possible, and Carey Scott, principal engineer for the mission, in front of the G-III aircraft the team will fly on.
      Credit: NASA/Carey ScottNASA/Carey Scott The Exploration Company, headquartered in Munich, Germany, and Bordeaux,
      France, enlisted NASA’s support through a reimbursable Space Act Agreement and will use SCIFLI data to advance future capsule designs.
      “Working with NASA on this mission has been a real highlight for our team. It shows what’s possible when people from different parts of the world come together with a shared goal,” said Najwa Naimy, chief program officer at The Exploration Company. “What the SCIFLI team is doing to spot and track our capsule in broad daylight, over the open ocean, is incredibly impressive. We’re learning from each other, building trust, and making real progress together.”
      NASA Langley is known for its expertise in engineering, characterizing, and developing spacecraft systems for entry, descent, and landing. The Gulfstream III aircraft is operated by the Flight Operations Directorate at NASA’s Armstrong Flight Research Center in Edwards, California.
      Share
      Details
      Last Updated Jun 18, 2025 EditorJoe AtkinsonContactJoe Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
      Langley Research Center General Space Operations Mission Directorate Explore More
      4 min read Career Exploration: Using Ingenuity and Innovation to Create ‘Memory Metals’
      Article 20 hours ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 23 hours ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Jacob Shaw A NASA system designed to measure temperature and strain on high-speed vehicles is set to make its first flights at hypersonic speeds – greater than Mach 5, or five times the speed of sound – when mounted to two research rockets launching this summer.
      Technicians in the Environmental Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California, used machines called shakers to perform vibration tests on the technology, known as a Fiber Optic Sensing System (FOSS), on March 26. The tests confirmed the FOSS could operate while withstanding the shaking forces of a rocket launch. Initial laboratory and flight tests in 2024 went well, leading to the recently tested system’s use on the U.S. Department of Defense coordinated research rockets to measure critical temperature safety data.
      Hypersonic sensing systems are crucial for advancing hypersonics, a potentially game-changing field in aeronautics. Capitalizing on decades of research, NASA is working to address critical challenges in hypersonic engine technology through its Advanced Air Vehicles Program.
      Using FOSS, NASA will gather data on the strain placed on vehicles during flight, as well as temperature information, which helps engineers understand the condition of a rocket or aircraft. The FOSS system collects data using a fiber about the thickness of a human hair that collects data along its length, replacing heavier and bulkier traditional wire harnesses and sensors.
      Jonathan Lopez and Allen Parker confer on the hypersonic Fiber Optic Sensor System at NASA’s Armstrong Flight Research Center in Edwards, California, on February 13, 2025. The system measures strain and temperature, critical safety data for hypersonic vehicles that travel five time the speed of sound.NASA/Steve Freeman “There is no reliable technology with multiple sensors on a single fiber in the hypersonic environment,” said Patrick Chan, FOSS project manager at Armstrong. “The FOSS system is a paradigm shift for hypersonic research, because it can measure temperature and strain.”
      For decades, NASA Armstrong worked to develop and improve the system, leading to hypersonic FOSS, which originated in 2020. Craig Stephens, the Hypersonic Technology Project associate project manager at NASA Armstrong, anticipated a need for systems and sensors to measure temperature and strain on hypersonic vehicles.
      “I challenged the FOSS team to develop a durable data collection system that had reduced size, weight, and power requirements,” Stephens said. “If we obtain multiple readings from one FOSS fiber, that means we are reducing the number of wires in a vehicle, effectively saving weight and space.”
      The research work has continually made the system smaller and lighter. While a space-rated FOSS used in 2022 to collect temperature data during a NASA mission in low Earth orbit was roughly the size of a toaster, the hypersonic FOSS unit is about the size of two sticks of butter.
      Jonathan Lopez and Nathan Rick prepare the hypersonic Fiber Optic Sensing System for vibration tests in the Environmental Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California. Testing on a machine called a shaker proved that the system could withstand the severe vibration it will endure in hypersonic flight, or travel at five times the speed of sound.NASA/Jim Ross Successful Partnerships
      To help advance hypersonic FOSS to test flights, NASA Armstrong Technology Transfer Office lead Ben Tomlinson orchestrated a partnership. NASA, the U.S. Air Force Test Pilot School in Edwards, California, and the U.S. Air Force’s 586th Flight Test Squadron at Holloman Air Force Base in New Mexico, agreed to a six-flight series in 2024.
      The test pilot school selected an experiment comparing FOSS and traditional sensors, looking at the data the different systems produced.
      The hypersonic FOSS was integrated into a beam fixed onto one end of a pod. It had weight on the other end of the beam so that it could move as the aircraft maneuvered into position for the tests. The pod fit under a T-38 aircraft that collected strain data as the aircraft flew.
      “The successful T-38 flights increased the FOSS technology readiness,” Tomlinson said. “However, a test at hypersonic speed will make FOSS more attractive for a United States business to commercialize.”
      April Torres, from left, Cryss Punteney, and Karen Estes watch as data flows from the hypersonic Fiber Optic Sensing System at NASA’s Armstrong Flight Research Center in Edwards, California. Testing on a machine called a shaker proved that the system could withstand the severe vibration it will endure in hypersonic flight, or travel at five times the speed of sound.NASA/Jim Ross New Opportunities
      After the experiment with the Air Force, NASA’s hypersonic technology team looked for other opportunities to advance the miniaturized version of the system. That interest led to the upcoming research rocket tests in coordination with the Department of Defense.
      “We have high confidence in the system, and we look forward to flying it in hypersonic flight and at altitude,” Chan said.
      A hypersonic Fiber Optic Sensing System, developed at NASA’s Armstrong Flight Research Center in Edwards, California, is ready for a test flight on a T-38 at the U.S. Air Force 586th Flight Test Squadron at Holloman Air Force Base in New Mexico. NASA Armstrong, the flight test squadron, and the U.S. Air Force Test Pilot School in Edwards, California, partnered for the test. From left are Earl Adams, Chathu Kuruppu, Colby Ferrigno, Allen Parker, Patrick Chan, Anthony Peralta, Ben Tomlinson, Jonathan Lopez, David Brown, Lt. Col. Sean Siddiqui, Capt. Nathaniel Raquet, Master Sgt. Charles Shepard, and Greg Talbot.U.S. Air Force/Devin Lopez Share
      Details
      Last Updated Jun 18, 2025 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Hypersonic Technology Explore More
      5 min read NASA F-15s Validate Tools for Quesst Mission
      Article 1 week ago 2 min read From Garment Industry to NASA: Meet Systems Engineer Daniel Eng
      Article 2 weeks ago 9 min read ARMD Research Solicitations (Updated June 6)
      Article 2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:17:03 Watch the replay of the ESA-European Commission press conference with Josef Aschbacher, Director General of ESA, and Andrius Kubilius, EU Commissioner for Defence and Space, held at the Paris Air Show 2025 (Le Bourget) on 18 June 2025.
      Download the transcript. 
      View the full article
  • Check out these Videos

×
×
  • Create New...