Jump to content

Recommended Posts

  • Publishers
Posted

On March 23, 1965, the United States launched the Gemini III spacecraft with astronauts Virgil “Gus” Grissom and John Young aboard, America’s first two-person spaceflight. Grissom earned the honor as the first person to enter space twice and Young as the first member of the second group of astronauts to fly in space. During their three-orbit flight they carried out the first orbital maneuvers of a crewed spacecraft, a critical step toward demonstrating rendezvous and docking. Grissom and Young brought Gemini 3 to a safe splashdown in the Atlantic Ocean. Their ground-breaking mission led the way to nine more successful Gemini missions in less than two years to demonstrate the techniques required for a Moon landing. Gemini 3 marked the last spaceflight controlled from Cape Kennedy, that function shifting permanently to a new facility in Houston. 

On April 13, 1964, just five days after the uncrewed Gemini I mission, in the newly open auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Director Robert Gilruth introduced the Gemini III crew to the press. NASA assigned Mercury 4 veteran Grissom and Group 2 astronaut Young as the prime crew, with Mercury 8 veteran Walter Schirra and Group 2 astronaut Thomas Stafford serving as their backups. The primary goals of Project Gemini included proving the techniques required for the Apollo Program to fulfil President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. Demonstrating rendezvous and docking between two spacecraft ranked as a high priority for Project Gemini.  

Distant view of the launch of a Gemini Titan.
Liftoff of Gemini III.
NASA

The uncrewed Gemini I and II missions validated the spacecraft’s design, reliability, and heat shield, clearing the way to launch Gemini III with a crew. On March 23, 1965, after donning their new Gemini spacesuits, Grissom and Young rode the transfer van to Launch Pad 19 at Cape Kennedy in Florida. They rode the elevator to their Gemini spacecraft atop its Titan II rocket where technicians assisted them in climbing into the capsule. At 9:24 a.m. EST, the Titan’s first stage engines ignited, and Gemini III rose from the launch pad. 

Five and a half minutes after launch, the Titan II’s second stage engine cut off and the spacecraft separated to begin its orbital journey. Grissom became the first human to enter space a second time. While engineers monitored the countdown from the Launch Pad 19 blockhouse, once in orbit flight controllers in the Mission Control Center at the Cape took over. Controllers in the new Mission Control Center at the Manned Spacecraft Center, now the Johnson Space Center in Houston, staffed consoles and monitored the mission in a backup capacity. Beginning with Gemini IV, control of all American human spaceflights shifted permanently to the Houston facility. 

Gemini III entered an orbit of 100 miles by 139 miles above the Earth. Near the end of the first orbit, while passing over Texas, Grissom and Young fired their spacecraft’s thrusters for one minute, 14 seconds. “They appear to be firing good,” said Young, confirming the success of the maneuver. The change in velocity adjusted their orbit to 97 miles by 105 miles. A second burn 45 minutes later altered the orbital inclination by 0.02 degrees. Another task for the crew involved testing new food and packaging developed for Gemini. As an off-the-menu item, Young had stowed a corned beef on rye sandwich in his suit pocket before flight, and both he and Grissom took a bite before stowing it away, concerned about crumbs from the sandwich floating free in the cabin.

Near the end of their third revolution, Grissom and Young prepared for the retrofire burn to bring them out of orbit. They oriented Gemini III with its blunt end facing forward and completed a final orbital maneuver to lower the low point of their orbit to 45 miles, ensuring reentry even if the retrorockets failed to fire. They jettisoned the rearmost adapter section, exposing the retrorockets that fired successfully, bringing the spacecraft out of orbit. They jettisoned the retrograde section, exposing Gemini’s heat shield. Minutes later, they encountered the upper layers of Earth’s atmosphere at 400,000 feet, and he buildup of ionized gases caused a temporary loss of communication between the spacecraft and Mission Control. At 50,000 feet, Grissom deployed the drogue parachute to stabilize and slow the spacecraft, followed by the main parachute at 10,600 feet. Splashdown occurred in the Atlantic Ocean near Grand Turk Island, about 52 miles short of the planned point, after a flight of 4 hours, 52 minutes, 31 seconds. 

A helicopter recovered Grissom and Young and delivered them to the deck of the U.S.S. Intrepid, arriving there one hour and 12 minutes after splashdown. On board the carrier, the astronauts received a medical checkup and a telephone call from President Lyndon B. Johnson. The ship sailed to pick up the spacecraft and sailors hoisted it aboard less than three hours after landing. The day after splashdown, Grissom and Young flew to Cape Kennedy for debriefings, a continuation of the medical examinations begun on the carrier, and a press conference. Following visits to the White House, New York, and Chicago, the astronauts returned home to Houston on March 31. The next day, Gilruth welcomed them back to the Manned Spacecraft Center, where in front of the main administration building, workers raised an American flag that Grissom and Young had carried on their mission. That flag flew during every subsequent Gemini mission. 

Image of a nine-story office building with workers raising an American flag in front of it.
During the Gemini III welcome home ceremony in front of the main administration building at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, workers raise an American flag that the astronauts had carried on their mission.
NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The U.S. Air Force and Space Force held its first National Signing Day ceremony at the historic Rayburn House Office building, Aug. 15. 

      View the full article
    • By NASA
      Dr. Steven “Steve” Platnick took the NASA agency Deferred Resignation Program (DRP). His last work day was August 8, 2025. Steve spent more than three decades at, or associated with, NASA. While he began his civil servant career at the NASA’s Goddard Space Flight Center (GSFC) in 2002, his Goddard association went back to 1993, first as a contractor and then as one of the earliest employees of the Joint Center for Earth Systems Technology (JCET), a cooperative agreement between the University of Maryland, Baltimore County (UMBC) and GSFC’s Earth Science Division. At JCET Steve helped lead the development of the Atmosphere Physics Track curricula. Previously, he had held an NRC post-doctoral fellow at the NASA’s Ames Research Center. Along with his research work on cloud remote sensing from satellite and airborne sensors, Steve served as the Deputy Director for Atmospheres in GSFC’s Earth Sciences Division from January 2015–July 2024.
      Dr. Steve Platnick Image credit: NASA During his time at NASA, Steve played an integral role in the sustainability and advancement of NASA’s Earth Observing System platforms and data. In 2008, he took over as the Earth Observing System (EOS) Senior Project Scientist from Michael King. In this role, he led the EOS Project Science Office, which included support for related EOS facility airborne sensors, ground networks, and calibration labs. The office also supported The Earth Observer newsletter, the NASA Earth Observatory, and other outreach and exhibit activities on behalf of NASA Headquarter’s Earth Science Division and Science Mission Directorate (further details below). From January 2003 – February 2010, Steve served as the Aqua Deputy Project Scientist.
      Improving Imager Cloud Algorithms
      Steve was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team serving as the Lead for the MODIS Atmosphere Discipline Team (cloud, aerosol and clear sky products) since 2008 and as the NASA Suomi National Polar-orbiting Partnership (Suomi NPP)/JPSS Atmosphere Discipline Lead/co-Lead from 2012–2020. His research team enhanced, maintained, and evaluated MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) cloud algorithms that included Level-2 (L2) Cloud Optical/Microphysical Properties components (MOD06 and MYD06 for MODIS on Terra and Aqua, respectively) and the Atmosphere Discipline Team Level-3 (L3) spatial/temporal products (MOD08, MYD08). The L2 cloud algorithms were developed to retrieve thermodynamic phase, optical thickness, effective particle radius, and derived water path for liquid and ice clouds, among other associated datasets. Working closely with longtime University of Wisconsin-Madison colleagues, the team also developed the CLDPROP continuity products designed to bridge the MODIS and VIIRS cloud data records by addressing differences in the spectral coverage between the two sensors; this product is currently in production for VIIRS on Suomi NPP and NOAA-20, as well as MODIS Aqua. The team also ported their CLDPROP code to Geostationary Operational Environmental Satellites (GOES) R-series Advanced Baseline Imager (ABI) and sister sensors as a research demonstration effort.
      Steve’s working group participation included the Global Energy and Water Exchanges (GEWEX) Cloud Assessment Working Group (2008–present); the International Cloud Working Group (ICWG), which is part of the Coordination Group for Meteorological Satellites (CGMS), and its original incarnation, the Cloud Retrieval Evaluation Working (CREW) since 2009; and the NASA Observations for Modeling Intercomparison Studies (obs4MIPs) Working Group (2011–2013). Other notable roles included Deputy Chair of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Science Definition Team (2011–2012) and membership in the Advanced Composition Explorer (ACE) Science Definition Team (2009–2011), the ABI Cloud Team (2005–2009), and the Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission Concept Team (2010-2011).
      Steve has participated in numerous major airborne field campaigns over his career. His key ER-2 flight scientist and/or science team management roles included the Monterey Area Ship Track experiment (MAST,1994), First (International Satellite Cloud Climatology Project (ISCCP) Regional Experiment – Arctic Cloud Experiment [FIRE-ACE, 1998], Southern Africa Fire-Atmosphere Research Initiative (SAFARI-2000), Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment (CRYSTAL-FACE, 2002), and Tropical Composition, Cloud and Climate Coupling (TC4, 2007).
      Supporting Earth Science Communications
      Through his EOS Project Science Office role, Steve has been supportive of the activities of NASA’s Science Support Office (SSO) and personally participated in many NASA Science exhibits at both national and international scientific conferences, including serving as a Hyperwall presenter numerous times.
      For The Earth Observer newsletter publication team in particular, Steve replaced Michael King as Acting EOS Senior Project Scientist in June 2008, taking over the authorship of “The Editor’s Corner” beginning with the May–June 2008 issue [Volume 20, Issue 3]. The Acting label was removed beginning with the January–February 2010 issue [Volume 22, Issue 1]. Steve has been a champion of continuing to retain a historical record of NASA science team meetings to maintain a chronology of advances made by different groups within the NASA Earth Science community. He was supportive of the Executive Editor’s efforts to create a series called “Perspectives on EOS,” which ran from 2008–2011 and told the stories of the early years of the EOS Program from the point of view of those who lived them. He also supported the development of articles to commemorate the 25th and 30th anniversary of The Earth Observer. Later, Steve helped guide the transition of the newsletter from a print publication – the November–December 2022 issue was the last printed issue – to fully online by July 2024, a few months after the publication’s 35th anniversary. The Earth Observer team will miss Steve’s keen insight, historical perspective, and encouragement that he has shown through his leadership for the past 85 issues of print and online publications.
      A Career Recognized through Awards and Honors
      Throughout his career, Steve has amassed numerous honors, including the Goddard William Nordberg Memorial Award for Earth Science in 2023 and the Verner E. Suomi Award from the American Meteorological Society (AMS) in 2016. He was named an AMS Fellow that same year. He received two NASA Agency Honor Awards – the Exceptional Achievement Medal in 2008 and the Exceptional Service Medal in 2015.
      Steve received his bachelor’s degree and master’s degree in electrical engineering from Duke University and the University of California, Berkeley, respectively. He earned a Ph.D. in atmospheric sciences from the University of Arizona.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s X-59 quiet supersonic research aircraft sits on the ramp at sunrise before ground tests at Lockheed Martin’s Skunk Works facility in Palmdale, California, on July 18, 2025. The X-59 is the centerpiece of NASA’s Quesst mission to demonstrate quiet supersonic flight and the aircraft is scheduled to make its first flight later this year.Lockheed Martin Corporation As we honor the legacy of aviation pioneers this National Aviation Day, NASA’s X-59 is preparing to push the boundaries of what’s possible in air travel. The quiet supersonic aircraft’s historic first flight is on the horizon, with final ground tests about to begin.
      Following completion of low-speed taxi tests in July 2025 in Palmdale, California, medium- and high-speed taxi tests mark the final steps before the aircraft takes to the skies for the first time. The taxi tests will focus on how the aircraft handles at higher ground speeds, including braking, steering, stability, and sensor performance. The X-59 team will also assess how well the visibility systems work since the cockpit has no forward-facing window.
      The X-59’s initial flight will kick off a first phase of flight testing focused on verifying the aircraft’s airworthiness and safety. The X-59 will reach speeds of approximately 240 mph at an altitude of about 12,000 feet. The roughly one-hour flight will depart from Palmdale and land at NASA’s Armstrong Flight Research Center in Edwards, California.
      During the flight, the X-59 team will evaluate several critical systems, including engine performance, stabilization, instrumentation, autopilot, control systems, and air data performance. These checks will ensure the aircraft is ready for future flight tests, where it will fly faster and higher to evaluate performance and safety, ultimately leading to future phases of the mission.
      The X-59 is the centerpiece of NASA’s Quesst mission, which aims to demonstrate quiet supersonic flight by reducing the loud sonic boom to a quieter “thump.” Proving the X-plane’s airworthiness is the first step on the path to gathering data in support of the mission. The flight data will help inform U.S. and international regulators as they consider new noise standards for supersonic commercial flight over land. 
      NASA test pilot Nils Larson lowers the canopy of the X-59 quiet supersonic research aircraft during ground tests at Lockheed Martin’s Skunk Works facility in Palmdale, California, on July 18, 2025. The X-59 is the centerpiece of NASA’s Quesst mission to demonstrate quiet supersonic flight and the aircraft is scheduled to make its first flight later this year.Lockheed Martin Corporation Share
      Details
      Last Updated Aug 19, 2025 EditorDede DiniusContactAmber Philman-Blair Related Terms
      Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      12 min read What is BioNutrients?
      Article 41 minutes ago 5 min read National Aviation Day: Celebrating NASA’s Heritage While Charting Our Future
      Article 2 hours ago 5 min read NASA Invites You to Celebrate National Aviation Day 2025
      Article 6 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA's SpaceX Crew-10 Post-Flight News Conference
    • By NASA
      Tess Caswell supports the International Space Station from NASA’s Johnson Space Center in Houston as a capsule communicator, or capcom, as well as through the Extravehicular Activity Office. She is currently on rotation as the Artemis lead capcom, helping to develop training and processes for the Artemis campaign by leveraging her experience supporting the space station.  
      She helps ensure that astronauts aboard the spacecraft receive the right information at the right time. This role involves a range of activities, from learning the language of the spacecraft and its onboard operations to participating in simulations to relay critical information to the crew, especially during dynamic operations or when things go wrong.  
      Read on to learn more about Tess! 
      Tess Caswell serves as lead capsule communicator, or capcom, in the Mission Control Center in Houston for the arrival of NASA’s SpaceX Crew-10 to the International Space Station. NASA/Robert Markowitz Where are you from? 
      Soldotna, Alaska. 
      How would you describe your job to family or friends that may not be familiar with NASA? 
      Capcoms are the people who speak to the astronauts on behalf of Mission Control, and I am the lead for the team of capcoms who will support missions to the Moon as part of NASA’s Artemis campaign.  
      What advice would you give to young individuals aspiring to work in the space industry or at NASA? 
      Remember that space travel is more than just engineers and scientists. It takes all kinds of people to support astronauts in space, including medicine, food science, communications, photography – you name it!
      Tess Caswell
      Extravehicular Activity Flight Controller and Lead Capsule Communicator 
      I like to encourage young people to think about what part of space travel inspires them. We live in an era where there are many companies leveraging space for different purposes, including tourism, settlement, profit, and exploration. It’s important to think about what aspect of space travel interests you – or use things like internships to figure it out! 
      If you’re excited about space but don’t want to be an engineer, there are still jobs for you. 
      How long have you been working for NASA? 
      Eight years, plus a few internships. 
      What was your path to NASA? 
      Internships and student projects were my path to NASA. As an undergraduate, I worked in a student rocket lab, which gave me firsthand experience building and testing hardware. During the summers, I participated in internships to explore various careers and NASA centers. My final internship led directly to my first job after college as an Environmental and Thermal Operating Systems (ETHOS) flight controller in mission control for the space station. 
      I left NASA for a while to pursue an advanced degree in planetary geology and spent two years working at Blue Origin as the lead flight controller for the New Shepard capsule. Ultimately, though, I am motivated by exploration and chose to return to NASA where that is our focus. I landed in the Extravehicular Activity Office (EVA) within the Flight Operations Directorate after returning from Blue Origin. 
      Tess Caswell suits up in the Extravehicular Mobility Unit at the Neutral Buoyancy Laboratory at NASA’s Sonny Carter Training Facility in Houston during training to become an EVA instructor. NASA/Richie Hindman Is there a space figure you’ve looked up to or someone that inspires you?  
      It’s hard to name a specific figure who inspires me. Instead, it’s the caliber of people overall who work in flight operations at Johnson Space Center. Not just the astronauts, but the folks in mission control, in the backrooms supporting the control center, and on the training teams for astronauts and flight controllers. Every single person demonstrates excellence every day. It inspires me to bring my best self to the table in each and every project. 
      What is your favorite NASA memory or the most meaningful project you’ve worked on during your time with NASA? 
      That is a hard one!  
      My current favorite is probably the day I certified as a capcom for the space station. The first time talking to the crew is both nerve-wracking and exciting. You know the entire space station community stops and listens when you are speaking, but it’s incredibly cool to be privileged with speaking to the crew. So, your first few days are a little scary, but awesome. After I’d been declared certified, the crew called down on Space –to Ground to congratulate me. It was a very special moment. I saved a recording of it! 
      Tess Caswell learns to fly the International Space Station Remote Manipulator System, or Canadarm2, in Canada as part of capcom training. Tess Caswell What do you love sharing about station? 
      The international collaboration required to design, build, and operate the International Space Station is a constant source of inspiration for me.
      Tess Caswell
      Extravehicular Activity Flight Controller and Lead Capsule Communicator 
      When I give folks tours of mission control, I like to point out the photo of the U.S.-built Unity node and the Russian-built Zarya module mated in the shuttle cargo bay. The idea that those two modules were designed and built in different countries, launched in two different vehicles, and connected for the first time in low Earth orbit reminds me of what we can all do when we work together across geopolitical boundaries. The space station brings people together in a common mission that benefits all of us. 
      If you could have dinner with any astronaut, past or present, who would it be? 
      Sally Ride, definitely. 
      Do you have a favorite space-related memory or moment that stands out to you? 
      If I had to choose one, I’d say it was the day a person from NASA visited my elementary school in 1995. I remember being completely captivated by his presentation and dying to ask questions when he came by my classroom later. It’s a favorite memory because it poured fuel on the spark of my early childhood interest in space exploration. It wasn’t the thing that initially piqued my interest, but that visit made the dream feel attainable and set me on the course that has me at NASA today. 
      What are some of the key projects you have worked on during your time at NASA? What have been your favorite? 
      I’ve worked in mission control for the space station as an ETHOS flight controller and, later, as a capcom. I’ve also certified as an EVA task backroom controller and scripted three spacewalks that were performed on the space station. While working in EVA, I also helped design the products and processes that will be used to design moonwalks for Artemis astronauts and how flight control operations will work during dynamic, science-driven spacewalks.  
       Developing an EVA is a huge integration effort, and you get to work with a broad range of perspectives to build a solid plan. Then, the spacewalks themselves were both challenging and rewarding. They didn’t go exactly to plan, but we kept the crew safe and accomplished our primary objectives! 
      I’m fortunate to have had so many cool experiences while working at NASA, and I know there will be many more. 
      Tess Caswell, right, and geoscientist Dr. Kelsey Young, left, conduct night operations in NASA’s Johnson Space Center rock yard, testing EVA techniques to prepare for future lunar missions.NASA/Norah Moran What are your hobbies/things you enjoy doing outside of work? 
      I like to stay active, including trail running, taekwondo, backpacking, and cross-country skiing (which is a bit hard to train for in Houston). I spend as much time as I can flying my Piper J-3 Cub, trying to make myself a better pilot each time I fly. Finally, I read and write fiction to let my imagination wander. 
      Day launch or night launch? 
      Night launch! 
      Favorite space movie? 
      Apollo 13, hands down! 
      NASA Worm or Meatball logo? 
      Worm – elegant and cool! 
      Every day, we are conducting exciting research aboard our orbiting laboratory that will help us explore farther into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It is a curated hub of space station research digital media from Johnson and other centers and space agencies.  
      Sign up for our weekly email newsletter to get the updates delivered directly to you.  
      Follow updates on social media at @ISS_Research on X, and on the space station accounts on Facebook and Instagram.  
      Explore More
      3 min read Countdown to Space Station’s Silver Jubilee with Silver Research
      Article 3 days ago 9 min read Station Nation: Meet Megan Harvey, Utilization Flight Lead and Capsule Communicator 
      Article 3 months ago 3 min read Meet Alex Olley: Air Force Veteran Powering the Space Station 
      Article 4 months ago View the full article
  • Check out these Videos

×
×
  • Create New...