Members Can Post Anonymously On This Site
NASA Science Live: Aurora Glow, Electric Flow & the EZIE Mission
-
Similar Topics
-
By NASA
A scanning electron microscope image of a micrometeorite impact crater in a particle of asteroid Bennu material. Credits: NASA/Zia Rahman 5 min read
NASA’s Bennu Samples Reveal Complex Origins, Dramatic Transformation
Asteroid Bennu, sampled by NASA’s OSIRIS-REx mission in 2023, is a mixture of dust that formed in our solar system, organic matter from interstellar space, and pre-solar system stardust. Its unique and varied contents were dramatically transformed over time by interactions with water and exposure to the harsh space environment.
These insights come from a trio of newly published papers based on the analysis of Bennu samples by scientists at NASA and other institutions.
Bennu is made of fragments from a larger parent asteroid destroyed by a collision in the asteroid belt, between the orbits of Mars and Jupiter. One of the papers, co-led by Jessica Barnes at the University of Arizona, Tucson, and Ann Nguyen of NASA’s Johnson Space Center in Houston and published in the journal Nature Astronomy, suggests that Bennu’s ancestor was made up of material that had diverse origins—near the Sun, far from the Sun, and even beyond our solar system.
The analyses show that some of the materials in the parent asteroid, despite very low odds, escaped various chemical processes driven by heat and water and even survived the extremely energetic collision that broke it apart and formed Bennu.
“We traced the origins of these initial materials accumulated by Bennu’s ancestor,” said Nguyen. “We found stardust grains with compositions that predate the solar system, organic matter that likely formed in interstellar space, and high temperature minerals that formed closer to the Sun. All of these constituents were transported great distances to the region that Bennu’s parent asteroid formed.”
The chemical and atomic similarities of samples from Bennu, the asteroid Ryugu (sampled by JAXA’s (the Japan Aerospace Exploration Agency) Hayabusa2 mission) and the most chemically primitive meteorites collected on Earth suggest their parent asteroids may have formed in a similar, distant region of the early solar system. Yet the differences from Ryugu and meteorites that were seen in the Bennu samples may indicate that this region changed over time or did not mix as well as some scientists have thought.Â
We found stardust grains with compositions that predate the solar system, organic matter that likely formed in interstellar space, and high temperature minerals that formed closer to the Sun.
Ann Nguyen
Planetary Scientist
Though some original constituents survived, most of Bennu’s materials were transformed by reactions with water, as reported in the paper co-led by Tom Zega of the University of Arizona and Tim McCoy of the Smithsonian’s National Museum of Natural History in Washington and published in Nature Geoscience. In fact, minerals in the parent asteroid likely formed, dissolved, and reformed over time.
“Bennu’s parent asteroid accumulated ice and dust. Eventually that ice melted, and the resulting liquid reacted with the dust to form what we see today, a sample that is 80% minerals that contain water,” said Zega. “We think the parent asteroid accumulated a lot of icy material from the outer solar system, and then all it needed was a little bit of heat to melt the ice and cause liquids to react with solids.”
Bennu’s transformation did not end there. The third paper, co-led by Lindsay Keller at NASA Johnson and Michelle Thompson of Purdue University, also published in Nature Geoscience, found microscopic craters and tiny splashes of once-molten rock – known as impact melts – on the sample surfaces, signs that the asteroid was bombarded by micrometeorites. These impacts, together with the effects of solar wind, are known as space weathering and occurred because Bennu has no atmosphere to protect it.
“The surface weathering at Bennu is happening a lot faster than conventional wisdom would have it, and the impact melt mechanism appears to dominate, contrary to what we originally thought,” said Keller. “Space weathering is an important process that affects all asteroids, and with returned samples, we can tease out the properties controlling it and use that data and extrapolate it to explain the surface and evolution of asteroid bodies that we haven’t visited.”
Ann Nguyen, co-lead author of a new paper that gives insights into the diverse origin of asteroid Bennu’s “parent” asteroid works alongside the NanoSIMS 50L (nanoscale secondary ion mass spectrometry) ion microprobe in the Astromaterials Research and Exploration Science Division at NASA’s Johnson Space Center in Houston. Credit: NASA/James Blair As the leftover materials from planetary formation 4.5 billion years ago, asteroids provide a record of the solar system’s history. But as Zega noted, we’re seeing that some of these remnants differ from what has been found in meteorites on Earth, because certain types of asteroids burn up in the atmosphere and never make it to the ground. That, the researchers point out, is why collecting actual samples is so important.
“The samples are really crucial for this work,” Barnes said. “We could only get the answers we got because of the samples. It’s super exciting that we’re finally able to see these things about an asteroid that we’ve been dreaming of going to for so long.”
The next samples NASA expects to help unravel our solar system’s story will be Moon rocks returned by the Artemis III astronauts.
NASA’s Goddard Space Flight Center provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from the Canadian Space Agency and asteroid sample science collaboration with JAXA’s Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
Melissa Gaskill
Johnson Space Center
For more information on NASA’s OSIRIS-REx mission, visit:
https://science.nasa.gov/mission/osiris-rex/
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Victoria Segovia
Johnson Space Center
(281) 483-5111
victoria.segovia@nasa.gov
View the full article
-
By Space Force
The U.S. Space Force, in partnership with SpaceX, successfully launched the eighth mission of the X-37B Orbital Test Vehicle (OTV-8) on a Falcon 9 rocket from Kennedy Space Center Launch Complex 39A.
View the full article
-
By NASA
NASA’s SpaceX 33rd commercial resupply mission will launch on the company’s Dragon spacecraft on the SpaceX Falcon 9 rocket to deliver research and supplies to the International Space StationNASA NASA and SpaceX are targeting no earlier than 2:45 a.m. EDT on Sunday, Aug. 24, for the next launch to deliver scientific investigations, supplies, and equipment to the International Space Station.
Filled with more than 5,000 pounds of supplies, the SpaceX Dragon spacecraft, on the company’s Falcon 9 rocket, will lift off from Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Dragon will dock autonomously about 7:30 a.m. on Monday, Aug. 25, to the forward port of the space station’s Harmony module.
NASA’s SpaceX 33rd commercial resupply mission will launch from Launch Complex 40 at Cape Canaveral Space Force Station in Florida.NASA This launch is the 33rd SpaceX commercial resupply services mission to the orbital laboratory for the agency, and the 13th SpaceX launch under the Commercial Resupply Services-2 contract. The first 20 launches were under the original resupply services contract.
Watch agency launch and arrival coverage on NASA+, Netflix, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
NASA’s live launch coverage will begin at 2:25 a.m. on Aug 24. Dragon’s arrival coverage will begin at 6 a.m. on Aug. 25. For nearly 25 years, the International Space Station has provided research capabilities used by scientists from over 110 countries to conduct more than 4,000 groundbreaking experiments in microgravity. Research conducted aboard the space station advances Artemis missions to the Moon and human exploration of Mars, while providing multiple benefits to humanity.
Arrival & Departure
The SpaceX Dragon spacecraft will arrive at the space station and dock autonomously to the forward port of the station’s Harmony module at approximately 7:30 a.m. on Monday, Aug. 25. NASA astronauts Mike Fincke and Jonny Kim will monitor the spacecraft’s arrival. It will stay docked to the orbiting laboratory for about four months before splashing down and returning critical science and hardware to teams on Earth.
NASA astronauts Mike Fincke and Jonny Kim will monitor the arrival of the SpaceX Dragon cargo spacecraft from the International Space Station.NASA Research Highlights
Preventing bone loss in space
Microgravity Associated Bone Loss-B (MABL-B) assesses the effects of microgravity on bone marrow stem cells and may provide a better understanding of the basic molecular mechanisms of bone loss that occurs during spaceflight and from normal aging on Earth.NASA A study of bone-forming stem cells in microgravity could provide insight into the basic mechanisms of the bone loss astronauts experience during long-duration space flight ahead of future exploration of the Moon and Mars.
Researchers identified a protein in the body called IL-6 that can send signals to stem cells to promote either bone formation or bone loss. This work evaluates whether blocking IL-6 signals could reduce bone loss during spaceflight. Results could improve our understanding of bone loss on Earth due to aging or disease and lead to new prevention and treatment strategies.
Printing parts, tools in space
Printing parts, tools in space
The objective of the Metal 3D printer aboard the International Space Station is to gain experience with operating and evaluating the manufacturing of spare parts in microgravity to support long duration space missions.NASA As mission duration and distance from Earth increase, resupply becomes harder. Additive manufacturing, or 3D printing, could be used to make parts and dedicated tools on demand, enhancing mission autonomy.
Research aboard the space station has made strides in 3D printing with plastic, but it is not suitable for all uses. Investigations from ESA’s (European Space Agency) Metal 3D Printer builds on recent successful printing of the first metal parts in space.
Bioprinting tissue in microgravity
Maturation of Vascularized Liver Tissue Construct in Zero Gravity (MVP Cell-07) is a biotechnology experiment studying bioprinted, or lab grown, liver tissues complete with blood vessels in space. The results could improve astronaut health on long missions and lead to new ways to treat patients on Earth.NASA Researchers plan to bioprint liver tissue containing blood vessels on the ground and examine how the tissue develops in microgravity. Results could help support the eventual production of entire functional organs for transplantation on Earth.
A previous mission tested whether this bioprinted liver tissue survived and functioned in space. This experimental round could show whether microgravity improves the development of the bioprinted tissue.
Biomanufacturing drug-delivery medical devices
The InSPA-Auxilium Bioprinter will test 3D printing medical implant devices designed to deliver drugs and treat various health conditions such as nerve inuries. Printing on the International Space Station may produce higher-quality devices than on Earth.NASA Scientists are creating an implantable device in microgravity that could support nerve regrowth after injuries. The device is created through bioprinting, a type of 3D printing that uses living cells or proteins as raw materials.
Traumatic injuries can create gaps between nerves, and existing treatments have a limited ability to restore nerve function and may result in impaired physical function. A bioprinted device to bridge nerve gaps could accelerate recovery and preserve function.
Cargo Highlights
NASA’s SpaceX 33rd commercial resupply mission will carry over 5,000 pounds of cargo to the International Space Station.NASA Hardware
Launch:
Reboost Kit – This kit will perform a reboost demonstration of the station to maintain its current altitude. The hardware, located in Dragon’s trunk, contains an independent propellant system, separate from the spacecraft’s main system, to fuel two Draco engines using existing hardware and propellant system design. The boost kit will demonstrate the capability to maintain the orbiting lab’s altitude starting in September with a series of burns planned periodically throughout the fall of 2025. During NASA’s SpaceX 31st commercial resupply services mission, the Dragon spacecraft first demonstrated these capabilities on Nov. 8, 2024. Poly Exercise Rope Kit – These exercise ropes distribute the desired exercise loads through a series of pulleys for the Advanced Restrictive Exercise Device. The ropes have a limited life cycle, and it will be necessary to replace them once they have reached their limit. Brine Filter – These filters remove solid particles from liquid in urine during processing as a part of the station’s water recovery system. Acoustic Monitor – A monitor that measures sound and records the data for download. This monitor will replace the sound level meter and the acoustic dosimeter currently aboard the orbiting laboratory. Multi-filtration Bed – This space unit will support the Water Processor Assembly and continue the International Space Station Program’s effort to replace a fleet of degraded units aboard the station to improve water quality through a single bed. Water Separator Orbital Unit – The unit draws air and condensate mixture from a condensing heat exchanger and separates the two components. The air is returned to the cabin air assembly outlet air-flow stream, and the water is delivered to the condensate bus. This unit launches to maintain in-orbit sparing while another is being returned for repair. Anomaly Gas Analyzer Top Assembly – This battery-powered device detects and monitors gases aboard the station, including oxygen, carbon dioxide, hydrogen chloride, hydrogen fluoride, ammonia, carbon monoxide, and hydrogen cyanide. It also measures cabin pressure, humidity, and temperature. It replaces the Compound Specific Analyzer Combustion Products as the primary tool for detecting airborne chemicals and conditions. Separator Pump (Water Recovery and Management) – This electrically-powered pump separates liquids and gases while rotating. It includes a scoop pump that moves the separated liquid into storage containers for use in other systems. The pump also contains sensor components and a filter to reduce electrical interference from the motor. Launching to maintain in-orbit sparing. Reducer Cylinder Assembly & Emergency Portable Breathing Apparatus – Together, this hardware provides 15 minutes of oxygen to a crew member in case of an emergency (smoke, fire, alarm). Two are launching to maintain a minimum in-orbit spare requirement. Passive Separator Flight Experiment – This experiment will test a new method for separating urine and air using existing technology that combines a water-repellent urine hose with an airflow separator from the station’s existing Waste Hygiene Compartment. Improved Resupply Water Tanks – Two tanks, each holding approximately 160 pounds of potable water, to supplement the Urine Processing Assembly. NORS (Nitrogen/Oxygen Recharge System) Maintenance Tank/Recharge Tank Assembly, Nitrogen – The NORS maintenance kit comprises two assemblies: the NORS recharge tank assembly and the NORS vehicle interface assembly. The recharge tank assembly will be pressurized with nitrogen gas for launch. The vehicle interface assembly will protect the recharge tank assembly for launch and stowage aboard the space station. Launching to maintain reserve oxygen levels on station. Swab Kits – These quick-disconnect cleaning kits are designed and created to replace in-orbit inventory. Return:
Oxygen Generation Assembly Pump – The assembly pump converts potable water from the water recovery system into oxygen and hydrogen. The oxygen is sent to the crew cabin, and the hydrogen is either vented or used to produce more water. The International Space Station has been using this process to produce oxygen and hydrogen for 15 years, and this unit will be retired upon its return to Earth. The flight support equipment within will be refurbished and used in a new pump launched aboard a future flight. Carbon Dioxide Monitoring Assembly – A carbon dioxide monitor that measures the gas using the infrared absorption sensor. It expired in July 2025 and will return for refurbishment. Meteoroid Debris Cover Center Section Assembly – This external multilayer insulation provides thermal and micro-meteoroid orbital debris protection on the node port. After it is removed and replaced with a new assembly launching on NASA’s Northrop Grumman 23rd commercial resupply services mission, this unit will return for repair or used for spare parts.  Multi-filtration Bed – This spare unit supports the Water Processor Assembly, which improves water quality aboard the International Space Station. Its return is part of an ongoing effort to replace a degraded fleet of in-orbit units. After its use, this multi-filtration bed will be refurbished for future re-flight. Separator Pump – This electrically powered pump separates liquids and gases while rotating. It includes a scoop pump that moves the separated liquid into storage containers for use in other systems. The pump also contains sensor components and a filter to reduce electrical interference from the motor. This unit is designed to run to failure, and after investigation and testing, it will be returned for repair and future flight. Rate Gyro Enclosure Assembly – The Rate Gyro Assembly determines the space station’s rate of angular motion. It is returning for repair and refurbishment and will be used as a spare. NORS (Nitrogen/Oxygen Recharge System) Maintenance Kit (Oxygen) – The NORS Maintenance Kit comprises two assemblies: the NORS Recharge Tank Assembly and the NORS Vehicle Interface Assembly. The recharge tank assembly will be pressurized with Nitrogen gas for launch. The vehicle interface assembly will protect the recharge tank assembly for launch and stowage aboard the space station. They are routinely returned for reuse and re-flight. The kit also includes a VIA bag (vehicle interface assembly) with foam, which is used as a cargo transfer bag for launch and return to protect the tank. Watch, Engage
Watch agency launch and arrival coverage on NASA+, Netflix, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
NASA’s live launch coverage will begin at 2:25 a.m. on Aug 24. Dragon’s arrival coverage will begin at 6 a.m. on Aug. 25.
Read more about how to watch and engage.
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.