Jump to content

Recommended Posts

  • Publishers
Posted
Editor's Corner header

11 min read

The Earth Observer Editor’s Corner: January–March 2025

NASA’s Earth Observing fleet continues to age gracefully. While several new missions have joined the fleet in the past year, scientists and engineers work to extend the life of existing missions and maximize their science along the way. The crowning example is the first Earth Observing System (EOS) Flagship mission, Terra, which celebrated a quarter-century in orbit on December 18, 2024.

Terra, continues to collect daily morning Earth observations using five different instruments: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth’s Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Measurement of Pollution in the Troposphere (MOPITT). Collectively, these observations have established a robust satellite record of global scientific processes to track changes in temperature, glaciers, clouds, vegetation, land-use, air quality, and natural hazards such as hurricanes, wildfires, and volcanic eruptions.

Originally designed for a six-year prime mission, Terra continues to deliver data used by emergency managers, researchers, and modelers over a quarter-of-a-century later. On December 18th, 2024, NASA celebrated the 25th anniversary of Terra’s launch with a celebration at the Goddard Space Flight Center (GSFC) Visitor’s Center. NASA Senior management [from NASA Headquarters and GSFC] as well as other key figures from Terra’s long history gave brief remarks and perspectives on Terra’s development and achievements. To read a review of the celebration, see “Celebrating 25 Years of Terra.”

Terra-related sessions (poster and oral) during the Fall American Geophysical Union (AGU) meeting were well-attended. The Terra team took advantage of the meeting to have a celebratory anniversary dinner that included attendees representing each of the five instruments.

Another mission to recently reach a longevity milestone is NASA’s Orbiting Carbon Observatory-2 (OCO-2), which celebrated 10 years in space last summer. OCO-2, which launched on July 2, 2014, from the Vandenburg Air Force (now Space Force) Base in California, was originally designed as a pathfinder mission to measure carbon dioxide (CO2) with the precision and accuracy needed to quantify where, when, and how the Earth inhales and exhales this important greenhouse gas seasonally. OCO-2 was part of the international Afternoon Constellation, or “A-Train,” which also included Aqua, Aura, CloudSat, and CALIPSO, as well as international partner missions.

Since its launch, OCO-2 data have revealed unprecedented insights into how the carbon cycle operates – from observing the impact and recovery of tropical land and ocean ecosystems during El Niño events to revealing the outsized impacts of extreme events, such as floods, droughts, and fires on ecosystem health and functioning. Researchers from around the world use OCO-2 data, opening new opportunities for understanding the response of the carbon cycle to human-driven perturbations, such as the impact of COVID lockdowns on atmospheric CO2 and improved quantification of emissions from large power plants and cities.

OCO-2 also maps vegetation fluorescence, which shows promise as a reliable early warning indicator of flash drought. During photosynthesis, plants “leak” unused photons, producing a faint glow known as solar-induced fluorescence (SIF). The stronger the fluorescence, the more CO2 a plant is taking from the atmosphere to power its growth. Ancillary SIF measurements from OCO-2 will help scientists better predict flash droughts, and understand how these impact carbon emissions.

Ten years into the mission, OCO-2 has become the gold standard for CO2 measurements from space. The spacecraft and instrument continue to perform nominally, producing data leading to new scientific discoveries.

OCO–3, built from spare parts during the build of OCO-2 and launched to the International Space Station (ISS) in 2019, also celebrated a milestone, marking five years in orbit on May 4, 2024. While the follow-on has the same instrument sensitivity and makes essentially the same measurements as OCO-2, the vantage point on the ISS as opposed to OCO-2’s polar orbit and the use of a new pointing mirror assembly (PMA) results in significant day-to-day spatial and temporal sampling differences that allows CO2 tracking for diurnal variability. In addition, the flexible PMA system allows for a much more dynamic observation-mode schedule.

Further out in space, about 1 million mi (~1.1 million km) from Earth, orbiting the “L1” Lagrange point between Earth and Sun, the Deep Space Climate Observatory (DSCOVR) celebrated the 10th anniversary of its launch on February 11, 2025. The two NASA Earth observing instruments on DSCOVR are the Earth Polychromatic Camera (EPIC) and National Institute of Standards and Technology (NIST) Advanced Radiometer [NISTAR].

The 10th DSCOVR EPIC NISTAR Science Team Meeting was held October 16–18, 2024 at Goddard Space Flight Center. Former U.S. Vice President Al Gore opened the meeting with remarks that focused on remote sensing and the future of Earth observations. Following Gore’s remarks, DSCOVR mission leadership and representatives from GSFC and the National Oceanic and Atmospheric Administration (NOAA) gave presentations on DSCOVR operations, EPIC calibration, and NISTAR Status and Science.

The meeting provided an opportunity for participants to learn the status of DSCOVR’s Earth-observing instruments, the status of recently released Level-2 (geophysical) data products, and the resulting science. As more people use DSCOVR data worldwide, the science team hopes to hear from users and team members at its next meeting. The latest updates from the mission can be found on the EPIC website. For more details, see the Summary of the 10th DSCOVR EPIC and NISTAR Science Team Meeting.

Flying in the space between satellites and ground-based observations, NASA’s Airborne Science Program operates a fleet of aircraft, unpiloted aerial vehicles, and even kites to study Earth and space science. Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a mainstay of ASP’s fleet ­­– see Photo 1. The aircraft, located at NASA’s Armstrong Flight Research Center (AFRC) in California, flew countless missions as a science laboratory, producing science data for the national and global scientific communities. NASA decided to retire the venerable DC-8 aircraft, which made its last science flight in April 2024. The DC-8 is being replaced with a similarly refurbished Boeing 777 aircraft, which will be even more capable than the DC-8 and is located at the NASA Langley Research Center (LaRC).

The NASA History Office and NASA Earth Science Division cohosted a workshop, titled “Contributions of the DC-8 to Earth System Science at NASA,” on October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC – for more details on the DC-8 event, see the article The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science.

DC8 Photo 1
Photo 1. NASA’s DC-8 flying laboratory flew Earth science missions from 1987 to 2024. Expert maintenance allowed the aircraft to conduct research on six continents and study ice fields on the seventh, Antarctica.
Image Credit: Lori Losey/NASA

There are also updates from three recent NASA field campaigns – where ground observations are timed and coordinated with aircraft flights (often at more than one altitude) and with satellite overpasses to gain a comprehensive (i.e., multilayered, multiscale) picture of the atmosphere over a certain area. 

The Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment (WHyMSIE) campaign was held from October 17- November 18, 2024. Serving as a future NASA planetary boundary-layer (PBL) mission prototype, WHyMSIE aimed to capture a wide variety of thermodynamic, moisture, and PBL regimes across a variety of surface types. WHyMSIE was an initial step towards an integrated and affordable PBL observing system of systems, with multiple observing nodes – i.e., space, suborbital, and ground – from passive and active sensors to enable a comprehensive and coherent picture of essential PBL variables and hydrometeors that is not possible with any single sensor, observational approach, or scale. As a partnership between NASA and NOAA, this field campaign flew a first-of-its-kind hyperspectral microwave airborne measurements (CoSMIR-H) that was complemented by other passive (thermal emission, solar reflectance) and active (lidar, radar) sensors flying onboard the NASA ER-2 (AFRC) and G-III (LaRC), with coordination over a variety of ground-based sensor facilities.

The GSFC Lidar Observation and Validation Experiment (GLOVE) was conducted in February 2025 at Edwards Air Force Base, California – see photo 2. GLOVE flew the Cloud Physics Lidar (CPL), Roscoe lidar, enhanced MODIS Airborne Simulator (eMAS) imaging scanner, and Cloud Radar System (CRS) on the ER-2 to validate NASA ICESat-2 atmospheric data products and validate ESA’s recently launched EarthCARE lidar, radar, and spectrometer products.

NASA’s Earth Science Division FireSense project focuses on delivering NASA’s unique Earth science and technological capabilities to operational agencies, striving to address challenges in US wildland fire management. Together with agency, academic, and private partners, FireSense completed an airborne campaign in a wildfire smoke-impacted airshed in Missoula, MT on August 27–29, 2024. During the three-day campaign, a NASA Uninhabited Aerial System (UAS) team conducted eight data-collection flights, partnering these launches with weather balloon launches.

FireSense uses airborne campaigns to evaluate capabilities and technologies to support decision making in wildland fire management and air quality forecasting. Targeted data collection produces better forecasts and more successful technology transfer to wildland fire operations. In the future, the FireSense Program will coordinate two airborne campaigns for spring 2025 at Geneva State Forest, Alabama and Kennedy Space Center located within Merritt Island National Wildlife Refuge, Florida. Both 2025 campaigns will incorporate data collection before, during, and after prescribed fire operations. Beyond NASA, the campaign works in close partnership with the U.S. Forest Service, National Weather Service, U.S. Fish and Wildlife Service, Department of Defense, as well as partners in academia and the private sector. For more information on FireSense’s most recent campaign in Montana see the Editor’s Corner supplemental summary of “The FireSense Project.”

Editor's Corner Winter Photo 2
Photo 2. NASA personnel stand in front of theNASA ER-2 at Edwards Air Force Base, California, during the GSFC Lidar Observation and Validation Experiment (GLOVE) in February 2025.
Image credit: John Yorks/NASA

Congratulations to Jack Kaye, Associate Director for research with the Earth Science Division within NASA’s Science Mission Directorate, who has received the William T. Pecora Award for his vision and creative leadership in multidisciplinary Earth science research, as well as spurring advancements in the investigator community, supporting development of sensors, and shaping NASA satellite and aircraft missions and research programs at the highest levels. To read more about this accomplishment, see “Kaye Honored with Pecora Award.

On the outreach front, AGU returned to Washington, DC, for its annual meeting from December 9–14, 2024. NASA continued to uphold its long-standing tradition as an AGU partner and exhibitor, leveraging the meeting as an opportunity to share the agency’s cutting-edge research, data, and technology with the largest collection of Earth and planetary science professionals in the world. Many of the estimated 25,000 students, scientists, and industry personnel who attended the conference visited the NASA Science exhibit, interacting with NASA subject matter experts and listening to Hyperwall presentations throughout the week.

As the final event in a busy calendar of annual scientific conferences, AGU is often an opportunity for NASA scientists to publish findings from the previous year and set goals for the year ahead. The agency’s robust portfolio of missions and programs will continue to set new records, such as NASA’s Parker Solar Probe pass of the Sun, and conduct fundamental research in Earth and space science. To read more about AGU 2024, see the article: AGU 2024: NASA Science on Display in the Nation’s Capital.

Ending on a somber note, we recently posted three notable obituaries. Each of these individuals made significant contributions to EOS history, which are highlighted in the In Memoriam articles linked below.  

Jeff Dozier, an environmental scientist, snow hydrologist, researcher, academic, and former EOS Project Scientist, died on November 17, 2024. Jeff embraced remote sensing with satellites to measure snow properties and energy balance. As a Project Scientist with the Earth Observing System Data and Information System (EOSDIS), he contributed to the design and management of very large information systems that would impact spatial modeling and environmental informatics.

Berrien Moore, Dean of the College of Atmospheric and Geographic Sciences at the University of Oklahoma (OU), died on December 17, 2024. Berrien served in several roles with NASA, including as a committee member and later chair of the organization’s Space and Earth Science Advisory Committee, Chair of the Earth Observing System Payload Advisory Committee, member and Chair of NASA’s Earth Science and Applications Committee, and member of the NASA Advisory Council. Berrien received NASA’s highest civilian honor, the Distinguished Public Service Medal, for outstanding service and the NOAA Administrator’s Recognition Award.

Pierre Morel, the first director of the World Climate Research Programme (WCRP) and founding member of WCRP’s Global Energy and Water Exchanges (GEWEX) Core project, died on December 10, 2024. Pierre’s work played an integral role in the development of tools used to study the atmosphere, many of which are still active today. Pierre was the recipient of the 2008 Alfred Wegener Medal & Honorary Membership for his outstanding contributions to geophysical fluid dynamics, his leadership in the development of climate research, and the applications of space observation to meteorology and the Earth system science.

Steve Platnick
EOS Senior Project Scientist

Share

Details

Last Updated
Mar 20, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Prelaunch News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By European Space Agency
      Week in images: 08-12 September 2025
      Discover our week through the lens
      View the full article
    • By NASA
      NSTGRO Homepage
      Andrew Arends
      University of California, Davis
      Astronaut-Powered Laundry Machine
      Allan Attia
      Stanford University
      Computational Modeling of Lithium Magnetoplasmadynamic Thruster for Nuclear Electric Propulsion
      Michael Auth
      University of California, Santa Barbara
      Non-Contact, Real-Time Diagnostics of Battery Aging in 18650 Cells During the Lunar Night Using Acoustic Spectroscopy
      Nicholas Brennan
      Cornell University
      Spin Wave-Based Neuromorphic Coprocessor for Advanced AI Applications
      John Carter
      Purdue University
      Spectroscopic Measurements and Kinetic Modeling of Non-Boltzmann CN for Entry Systems Modeling
      Thomas Clark
      University of Colorado, Boulder
      Data-Driven Representations of Trajectories in Cislunar Space
      Nicholas Cmkovich
      University of Wisconsin-Madison
      Development of Radiation Tolerant Additively Manufactured Refractory Compositionally Complex Alloys
      Kara Hardy
      Michigan Technological University
      Design and Optimization of Cuttlebone-Inspired Cellular Materials Using Turing Systems
      Tyler Heggenes
      Utah State University
      Mitigating Spacecraft Charging Issues Through High-Precision, Temperature-Dependent Measurements of Dynamic Radiation Induced Conductivity
      Joseph Hesse-Withbroe
      University of Colorado, Boulder
      Decreasing Astronaut Radiation Doses with Magnetic Shields
      Niya Hope-Glenn
      Massachusetts Institute of Technology
      Investigating the Selectivity of CO2 Hydrogenation to Ethylene in a Plasma Reactor for Mars ISRU
      Adrianna Hudyma
      University of Minnesota
      Biorthogonal Translation System for Production of Pharmaceuticals During Space Missions
      Tushaar Jain
      Carnegie Mellon University
      Towards On-Demand Planetary Landing Through On-Board Autonomous Mapping and Cross-Modality Map Relative Localization
      Devin Johnson
      Purdue University
      Numerical and Experimental Methodology to Optimize Propellant Injection, Mixing, and Response in Rotating Detonation Engines
      Jack Joshi
      University of Texas at Austin
      State Representations for Measurement Fusion and Uncertainty Propagation in Cislunar Regime
      John Knoll
      William Marsh Rice University
      Dexterous Manipulation via Vision-Intent-Action Models
      Joseph Ligresti
      Purdue University
      Effects of Vacuum Conditions on FORP Reactivity and Long-Term Viability of MON-25/MMH Thrusters
      Alexander Madison
      University of Central Florida
      Hybrid Microwave Sintering of Lunar Regolith with 2.45GHz and 18-28GHz
      Aurelia Moriyama-Gurish
      Yale University
      Investigating Fundamental High Strain Rate Deformation Mechanisms to Bridge the Experiment-Computation Gap and Local Thermal Shock Response in C103
      Sophia Nowak
      University of Wisconsin-Madison
      Pulsed Laser System for Calibration of High Resolution X-ray Microcalorimeters
      Jacob Ortega
      Missouri University of Science and Technology
      Forging the Future Lunar Settlement with In-Situ Aluminum Extraction
      John Riley O’Toole
      University of Michigan
      Laser-Based Measurements of Electron Properties in Hall Effect Thrusters with Non-Conventional Propellants Enabling for Cis-Lunar, Mars, and Deep Space Missions
      Cort Reinarz
      Texas A&M University
      Utilizing Biometrics in Closed-Loop Compression Garment Systems as a Countermeasure for Orthostatic Intolerance
      Erica Sawczynec
      University of Texas at Austin
      A Monolithic Cross-Dispersed Grism for Near-Infrared Spectroscopy
      Ingrid Shan
      California Institute of Technology
      Micro-Architected Metallic Lattices for Lunar Dust Mitigation
      Pascal Spino
      Massachusetts Institute of Technology
      Centimeter-Scale Robots for Accessing Europa’s Benthic Zone
      Benjamin Stern
      Northwestern University, Chicago
      A Near-Field Thermoreflectance Approach for Nanoscale Thermal Mapping on Nanostructured Sige
      Titus Szobody
      William Marsh Rice University
      Leveraging Polymeric Photochemistry in Ionic Liquid-Based Mirror Synthesis for Space Telescope Optics
      Seneca Velling
      California Institute of Technology
      Constraining Weathering Kinetics Under Experimentally Simulated Venus Conditions
      Zhuochen Wang
      Georgia Institute of Technology
      Optimal Covariance Steering on Lie Groups for Precision Powered Descent
      Stanley Wang
      Stanford University
      Compact Robots with Long Reach for Space Exploration and Maintenance Tasks
      Thomas Westenhofer
      University of California, Irvine
      Kinetic Modeling of Carbon Mass Loss in Nuclear Thermal Propulsion
      Andrew Witty
      Purdue University
      Scalable Nanoporous Paints with High Solar Reflectance and Durability in Space Environments
      Jonathan Wrieden
      University of Maryland, College Park
      A Stochastic Model for Predicting Charged Orbital Debris Probability Densities by Utilizing Earth’s Electromagnetic Field to Guide Active Debris Remediation Efforts
      Jasen Zion
      California Institute of Technology
      Large-Format, Fast SNSPD Cameras Benchmarked with Neutral Atom Arrays
      Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Space Technology Research Grants
      NASA Space Technology Graduate Research Opportunities (NSTGRO)
      Technology
      Share
      Details
      Last Updated Sep 12, 2025 EditorLoura Hall Related Terms
      Space Technology Research Grants Space Technology Mission Directorate View the full article
    • By European Space Agency
      Image: Part of the Gibson Desert in Western Australia is featured in this image, captured by the Φsat-2 mission in June 2025. View the full article
  • Check out these Videos

×
×
  • Create New...