Jump to content

Recommended Posts

  • Publishers
Posted
Editor's Corner header

11 min read

The Earth Observer Editor’s Corner: January–March 2025

NASA’s Earth Observing fleet continues to age gracefully. While several new missions have joined the fleet in the past year, scientists and engineers work to extend the life of existing missions and maximize their science along the way. The crowning example is the first Earth Observing System (EOS) Flagship mission, Terra, which celebrated a quarter-century in orbit on December 18, 2024.

Terra, continues to collect daily morning Earth observations using five different instruments: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth’s Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Measurement of Pollution in the Troposphere (MOPITT). Collectively, these observations have established a robust satellite record of global scientific processes to track changes in temperature, glaciers, clouds, vegetation, land-use, air quality, and natural hazards such as hurricanes, wildfires, and volcanic eruptions.

Originally designed for a six-year prime mission, Terra continues to deliver data used by emergency managers, researchers, and modelers over a quarter-of-a-century later. On December 18th, 2024, NASA celebrated the 25th anniversary of Terra’s launch with a celebration at the Goddard Space Flight Center (GSFC) Visitor’s Center. NASA Senior management [from NASA Headquarters and GSFC] as well as other key figures from Terra’s long history gave brief remarks and perspectives on Terra’s development and achievements. To read a review of the celebration, see “Celebrating 25 Years of Terra.”

Terra-related sessions (poster and oral) during the Fall American Geophysical Union (AGU) meeting were well-attended. The Terra team took advantage of the meeting to have a celebratory anniversary dinner that included attendees representing each of the five instruments.

Another mission to recently reach a longevity milestone is NASA’s Orbiting Carbon Observatory-2 (OCO-2), which celebrated 10 years in space last summer. OCO-2, which launched on July 2, 2014, from the Vandenburg Air Force (now Space Force) Base in California, was originally designed as a pathfinder mission to measure carbon dioxide (CO2) with the precision and accuracy needed to quantify where, when, and how the Earth inhales and exhales this important greenhouse gas seasonally. OCO-2 was part of the international Afternoon Constellation, or “A-Train,” which also included Aqua, Aura, CloudSat, and CALIPSO, as well as international partner missions.

Since its launch, OCO-2 data have revealed unprecedented insights into how the carbon cycle operates – from observing the impact and recovery of tropical land and ocean ecosystems during El Niño events to revealing the outsized impacts of extreme events, such as floods, droughts, and fires on ecosystem health and functioning. Researchers from around the world use OCO-2 data, opening new opportunities for understanding the response of the carbon cycle to human-driven perturbations, such as the impact of COVID lockdowns on atmospheric CO2 and improved quantification of emissions from large power plants and cities.

OCO-2 also maps vegetation fluorescence, which shows promise as a reliable early warning indicator of flash drought. During photosynthesis, plants “leak” unused photons, producing a faint glow known as solar-induced fluorescence (SIF). The stronger the fluorescence, the more CO2 a plant is taking from the atmosphere to power its growth. Ancillary SIF measurements from OCO-2 will help scientists better predict flash droughts, and understand how these impact carbon emissions.

Ten years into the mission, OCO-2 has become the gold standard for CO2 measurements from space. The spacecraft and instrument continue to perform nominally, producing data leading to new scientific discoveries.

OCO–3, built from spare parts during the build of OCO-2 and launched to the International Space Station (ISS) in 2019, also celebrated a milestone, marking five years in orbit on May 4, 2024. While the follow-on has the same instrument sensitivity and makes essentially the same measurements as OCO-2, the vantage point on the ISS as opposed to OCO-2’s polar orbit and the use of a new pointing mirror assembly (PMA) results in significant day-to-day spatial and temporal sampling differences that allows CO2 tracking for diurnal variability. In addition, the flexible PMA system allows for a much more dynamic observation-mode schedule.

Further out in space, about 1 million mi (~1.1 million km) from Earth, orbiting the “L1” Lagrange point between Earth and Sun, the Deep Space Climate Observatory (DSCOVR) celebrated the 10th anniversary of its launch on February 11, 2025. The two NASA Earth observing instruments on DSCOVR are the Earth Polychromatic Camera (EPIC) and National Institute of Standards and Technology (NIST) Advanced Radiometer [NISTAR].

The 10th DSCOVR EPIC NISTAR Science Team Meeting was held October 16–18, 2024 at Goddard Space Flight Center. Former U.S. Vice President Al Gore opened the meeting with remarks that focused on remote sensing and the future of Earth observations. Following Gore’s remarks, DSCOVR mission leadership and representatives from GSFC and the National Oceanic and Atmospheric Administration (NOAA) gave presentations on DSCOVR operations, EPIC calibration, and NISTAR Status and Science.

The meeting provided an opportunity for participants to learn the status of DSCOVR’s Earth-observing instruments, the status of recently released Level-2 (geophysical) data products, and the resulting science. As more people use DSCOVR data worldwide, the science team hopes to hear from users and team members at its next meeting. The latest updates from the mission can be found on the EPIC website. For more details, see the Summary of the 10th DSCOVR EPIC and NISTAR Science Team Meeting.

Flying in the space between satellites and ground-based observations, NASA’s Airborne Science Program operates a fleet of aircraft, unpiloted aerial vehicles, and even kites to study Earth and space science. Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a mainstay of ASP’s fleet ­­– see Photo 1. The aircraft, located at NASA’s Armstrong Flight Research Center (AFRC) in California, flew countless missions as a science laboratory, producing science data for the national and global scientific communities. NASA decided to retire the venerable DC-8 aircraft, which made its last science flight in April 2024. The DC-8 is being replaced with a similarly refurbished Boeing 777 aircraft, which will be even more capable than the DC-8 and is located at the NASA Langley Research Center (LaRC).

The NASA History Office and NASA Earth Science Division cohosted a workshop, titled “Contributions of the DC-8 to Earth System Science at NASA,” on October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC – for more details on the DC-8 event, see the article The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science.

DC8 Photo 1
Photo 1. NASA’s DC-8 flying laboratory flew Earth science missions from 1987 to 2024. Expert maintenance allowed the aircraft to conduct research on six continents and study ice fields on the seventh, Antarctica.
Image Credit: Lori Losey/NASA

There are also updates from three recent NASA field campaigns – where ground observations are timed and coordinated with aircraft flights (often at more than one altitude) and with satellite overpasses to gain a comprehensive (i.e., multilayered, multiscale) picture of the atmosphere over a certain area. 

The Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment (WHyMSIE) campaign was held from October 17- November 18, 2024. Serving as a future NASA planetary boundary-layer (PBL) mission prototype, WHyMSIE aimed to capture a wide variety of thermodynamic, moisture, and PBL regimes across a variety of surface types. WHyMSIE was an initial step towards an integrated and affordable PBL observing system of systems, with multiple observing nodes – i.e., space, suborbital, and ground – from passive and active sensors to enable a comprehensive and coherent picture of essential PBL variables and hydrometeors that is not possible with any single sensor, observational approach, or scale. As a partnership between NASA and NOAA, this field campaign flew a first-of-its-kind hyperspectral microwave airborne measurements (CoSMIR-H) that was complemented by other passive (thermal emission, solar reflectance) and active (lidar, radar) sensors flying onboard the NASA ER-2 (AFRC) and G-III (LaRC), with coordination over a variety of ground-based sensor facilities.

The GSFC Lidar Observation and Validation Experiment (GLOVE) was conducted in February 2025 at Edwards Air Force Base, California – see photo 2. GLOVE flew the Cloud Physics Lidar (CPL), Roscoe lidar, enhanced MODIS Airborne Simulator (eMAS) imaging scanner, and Cloud Radar System (CRS) on the ER-2 to validate NASA ICESat-2 atmospheric data products and validate ESA’s recently launched EarthCARE lidar, radar, and spectrometer products.

NASA’s Earth Science Division FireSense project focuses on delivering NASA’s unique Earth science and technological capabilities to operational agencies, striving to address challenges in US wildland fire management. Together with agency, academic, and private partners, FireSense completed an airborne campaign in a wildfire smoke-impacted airshed in Missoula, MT on August 27–29, 2024. During the three-day campaign, a NASA Uninhabited Aerial System (UAS) team conducted eight data-collection flights, partnering these launches with weather balloon launches.

FireSense uses airborne campaigns to evaluate capabilities and technologies to support decision making in wildland fire management and air quality forecasting. Targeted data collection produces better forecasts and more successful technology transfer to wildland fire operations. In the future, the FireSense Program will coordinate two airborne campaigns for spring 2025 at Geneva State Forest, Alabama and Kennedy Space Center located within Merritt Island National Wildlife Refuge, Florida. Both 2025 campaigns will incorporate data collection before, during, and after prescribed fire operations. Beyond NASA, the campaign works in close partnership with the U.S. Forest Service, National Weather Service, U.S. Fish and Wildlife Service, Department of Defense, as well as partners in academia and the private sector. For more information on FireSense’s most recent campaign in Montana see the Editor’s Corner supplemental summary of “The FireSense Project.”

Editor's Corner Winter Photo 2
Photo 2. NASA personnel stand in front of theNASA ER-2 at Edwards Air Force Base, California, during the GSFC Lidar Observation and Validation Experiment (GLOVE) in February 2025.
Image credit: John Yorks/NASA

Congratulations to Jack Kaye, Associate Director for research with the Earth Science Division within NASA’s Science Mission Directorate, who has received the William T. Pecora Award for his vision and creative leadership in multidisciplinary Earth science research, as well as spurring advancements in the investigator community, supporting development of sensors, and shaping NASA satellite and aircraft missions and research programs at the highest levels. To read more about this accomplishment, see “Kaye Honored with Pecora Award.

On the outreach front, AGU returned to Washington, DC, for its annual meeting from December 9–14, 2024. NASA continued to uphold its long-standing tradition as an AGU partner and exhibitor, leveraging the meeting as an opportunity to share the agency’s cutting-edge research, data, and technology with the largest collection of Earth and planetary science professionals in the world. Many of the estimated 25,000 students, scientists, and industry personnel who attended the conference visited the NASA Science exhibit, interacting with NASA subject matter experts and listening to Hyperwall presentations throughout the week.

As the final event in a busy calendar of annual scientific conferences, AGU is often an opportunity for NASA scientists to publish findings from the previous year and set goals for the year ahead. The agency’s robust portfolio of missions and programs will continue to set new records, such as NASA’s Parker Solar Probe pass of the Sun, and conduct fundamental research in Earth and space science. To read more about AGU 2024, see the article: AGU 2024: NASA Science on Display in the Nation’s Capital.

Ending on a somber note, we recently posted three notable obituaries. Each of these individuals made significant contributions to EOS history, which are highlighted in the In Memoriam articles linked below.  

Jeff Dozier, an environmental scientist, snow hydrologist, researcher, academic, and former EOS Project Scientist, died on November 17, 2024. Jeff embraced remote sensing with satellites to measure snow properties and energy balance. As a Project Scientist with the Earth Observing System Data and Information System (EOSDIS), he contributed to the design and management of very large information systems that would impact spatial modeling and environmental informatics.

Berrien Moore, Dean of the College of Atmospheric and Geographic Sciences at the University of Oklahoma (OU), died on December 17, 2024. Berrien served in several roles with NASA, including as a committee member and later chair of the organization’s Space and Earth Science Advisory Committee, Chair of the Earth Observing System Payload Advisory Committee, member and Chair of NASA’s Earth Science and Applications Committee, and member of the NASA Advisory Council. Berrien received NASA’s highest civilian honor, the Distinguished Public Service Medal, for outstanding service and the NOAA Administrator’s Recognition Award.

Pierre Morel, the first director of the World Climate Research Programme (WCRP) and founding member of WCRP’s Global Energy and Water Exchanges (GEWEX) Core project, died on December 10, 2024. Pierre’s work played an integral role in the development of tools used to study the atmosphere, many of which are still active today. Pierre was the recipient of the 2008 Alfred Wegener Medal & Honorary Membership for his outstanding contributions to geophysical fluid dynamics, his leadership in the development of climate research, and the applications of space observation to meteorology and the Earth system science.

Steve Platnick
EOS Senior Project Scientist

Share

Details

Last Updated
Mar 20, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Jonny Kim The Soyuz MS-26 spacecraft is pictured backing away from the International Space Station shortly after undocking on April 19, 2025. Three hours later, the spacecraft landed in Kazakhstan, returning astronaut Don Pettit and cosmonauts Alexey Ovchinin and Ivan Vagner to Earth.
      While aboard the International Space Station, Pettit conducted hundreds of hours of scientific investigations, including research to enhance on-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions.
      Image credit: NASA/Jonny Kim
      View the full article
    • By European Space Agency
      Week in images: 28 April - 02 May 2025
      Discover our week through the lens
      View the full article
    • By European Space Agency
      Image: The Ocean and Land Colour Instrument on Copernicus Sentinel-3 captured this image of Earth’s biggest iceberg, A23a, on 5 April 2025. View the full article
    • By NASA
      Skywatching Skywatching Home What’s Up What to See Tonight Meteor Showers Eclipses Moon Guide More Tips & Guides Skywatching FAQ Night Sky Network Eta Aquarids & Waiting for a Nova! 
      The first week of May brings the annual Eta Aquarid meteors, peaking on the 6th. And sometime in the next few months, astronomers predict a “new star” or nova explosion will become visible to the unaided eye. 
      Skywatching Highlights
      All Month – Planet Visibility: 
      Venus: Appears very bright and low in the east in the hour before sunrise all month.  Mars: Easy to find in the west in the first few hours of the night, all month long. Sets around midnight to 1 a.m. local time.  Jupiter: Shines brightly in the west following sunset all month. Early in the month it sets about two hours after the Sun, but by late May it’s setting only an hour after sunset.  Saturn: Begins the month next to Venus, low in the eastern sky before sunrise. Quickly separates from Saturn and rises higher in the sky each day before dawn.  Daily Highlights
      May 6 – Eta Aquarid Meteors – The peak of this annual shower is early on the morning of May 6th. The two or three nights before that are also decent opportunities to spy a few shooting stars. On the peak night this year, the Moon sets by around 3 a.m., leaving dark skies until dawn, for ideal viewing conditions. Seeing 10-20 meteors per hour is common for the Northern Hemisphere, while south of the equator, observers tend to see substantially more. 
      May 3 – Mars & Moon: The first quarter Moon appears right next to the Red Planet on the 3rd. Find them in the west during the first half of the night that evening. 
      All month – Venus & Saturn: Low in the eastern sky each morning you’ll find bright Venus paired with much fainter Saturn. They start the month close together, but Saturn pulls away and rises higher over the course of the month. 
      All month – Mars & Jupiter: The planets to look for on May evenings are Mars and Jupiter. They’re visible for a couple of hours after sunset in the western sky. 
      All month – Corona Borealis: Practice finding this constellation in the eastern part of the sky during the first half of the night, so you have a point of comparison when the T CrB nova appears there, likely in the next few months. 
      Transcript
      What’s Up for May? Four bright planets, morning and night, a chance of meteor showers, and waiting for a nova. 
      May Planet Viewing 
      For planet watching this month, you’ll find Mars and Jupiter in the west following sunset. Mars sticks around for several hours after it gets dark out, but Jupiter is setting by 9:30 or 10 p.m., and getting lower in the sky each day. The first quarter Moon appears right next to the Red Planet on the 3rd. Find them in the west during the first half of the night that evening. 
      Sky chart showing Venus and Saturn with the crescent Moon in the predawn sky on May 23., 2025. NASA/JPL-Caltech In the morning sky, Venus and Saturn are the planets to look for in May. They begin the month appearing close together on the sky, and progressively pull farther apart as the month goes on. For several days in late May, early risers will enjoy a gathering of the Moon with Saturn and Venus in the eastern sky before dawn. Watch as the Moon passes the two planets while becoming an increasingly slimmer crescent. You’ll find the Moon hanging between Venus and Saturn on the 23rd.   
      Eta Aquarid Meteor Shower 
      Early May brings the annual Eta Aquarid meteor shower. These are meteors that originate from Comet Halley. Earth passes through the comet’s dust stream each May, and again in October. Eta Aquarids are fast moving, and a lot of them produce persistent dust trains that linger for seconds after the meteor’s initial streak.  
      This is one of the best annual showers in the Southern Hemisphere, but tends to be more subdued North of the Equator, where we typically see 10-20 meteors per hour. On the peak night this year, the Moon sets by around 3 a.m., leaving dark skies until dawn, for ideal viewing conditions. While the peak is early on the morning of May 6th, the two or three nights before that are also decent opportunities to spy a few shooting stars. 
      Waiting for a Nova 
      Sky chart showing constellation Corona Borealis with the location where nova “T CrB” is predicted to appear. The view depicts the constellation with the nova occurring, indicated by an arrow. NASA/JPL-Caltech Astronomers have been waiting expectantly for light from a distant explosion to reach us here on Earth. An event called a nova is anticipated to occur sometime in the coming months. Some 3,000 light years away is a binary star system called T Coronae Borealis, or “T CrB.” It consists of a red giant star with a smaller white dwarf star orbiting closely around it. Now the giant’s outer atmosphere is all puffed up, and the dwarf star is close enough that its gravity continually captures some of the giant’s hydrogen. About every 80 years, the white dwarf has accumulated so much of the other star’s hydrogen, that it ignites a thermonuclear explosion. And that’s the nova. 
      T Coronae Borealis is located in the constellation Corona Borealis, or the “Northern Crown,” and it’s normally far too faint to see with the unaided eye. But it’s predicted the nova will be as bright as the constellation’s brightest star, which is about as bright as the North Star, Polaris. You’ll find Corona Borealis right in between the two bright stars Arcturus and Vega, and you can use the Big Dipper’s handle to point you to the right part of the sky. Try having a look for it on clear, dark nights before the nova, so you’ll have a comparison when a new star suddenly becomes visible there. 
      A sky chart indicating how to locate the constellation Corona Borealis between the bright stars Arcturus and Vega. The Big Dipper’s handle points in the direction of Corona Borealis. NASA/JPL-Caltech Now, you may have heard about this months ago, as astronomers started keeping watch for the nova midway through 2024, but it hasn’t happened yet. Predicting exactly when novas or any sort of stellar outburst will happen is tricky, but excitement began growing when astronomers observed the star to dim suddenly, much as it did right before its previous nova in 1946. When the nova finally does occur, it won’t stay bright for long, likely flaring in peak brightness for only a few days. And since it’s not predicted again for another 80 years, you might just want to join the watch for this super rare, naked eye stellar explosion in the sky! 
      Here are the phases of the Moon for May. 
      The phases of the Moon for May 2025. NASA/JPL-Caltech You can stay up to date on all of NASA’s missions exploring the solar system and beyond at NASA Science.
      I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month. 
      Keep Exploring Discover More Topics From NASA
      Skywatching



      Planets



      Solar System Exploration



      Moons


      View the full article
    • By NASA
      Explore This Section Projects Highlights Publications NASA Citizen Scientists Science Activation Resources 2 min read
      Amateur Radio Scientists Shine at the 2025 HamSCI Workshop
      A collage of Posters from HamSCI’s March workshop. You can read them all online! Love Ham Radio? The HamSCI project fosters collaboration between amateur radio operators and professional researchers. Its goals are to advance scientific research and understanding through amateur radio activities, encourage the development of modern technologies to support this research, and provide educational opportunities for the amateur community and the public. 
      HamSCI held its annual Workshop, ‘HamSCI’s Big Year’, at the New Jersey Institute of Technology in late March. Over 100 members of the HamSCI community attended: researchers, students (secondary through graduate level), and citizen scientist volunteers. Over the two-day event, in-person and virtual participants experienced twenty-five talks on topics ranging from analysis of HamSCI’s 2023/24 Festivals of Eclipse Ionospheric Science events to space weather observations made during the May 10, 2024 geomagnetic superstorm.
      The Workshop hosted a variety of Keynote and Invited Tutorial speakers, including distinguished scientists and leaders in the Amateur (ham) Radio community.  The Workshop concluded with a poster session, featuring current research, ongoing educational activities, and concepts for future events involving Sun-space-Earth science topics.  Posters were submitted from the US, Brazil, Egypt, the United Kingdom, and Turkey.
      Explore the workshop presentations and posters.  Videos of conference presentations will be available at the HamSCI website in a few months.
      HamSCI is supported by NASA, the National Science Foundation, and the Amateur Radio Digital Communications (ARDC) foundation.
      Share








      Details
      Last Updated May 01, 2025 Related Terms
      Citizen Science Get Involved Heliophysics Explore More
      8 min read How to Contribute to Citizen Science with NASA


      Article


      2 days ago
      3 min read Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!


      Article


      2 days ago
      3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge


      Article


      1 week ago
      View the full article
  • Check out these Videos

×
×
  • Create New...