Jump to content

Texas High School Aerospace Scholars: A Launchpad for Future Innovators 


Recommended Posts

  • Publishers
Posted

NASA’s Office of STEM Engagement at Johnson Space Center offers Texas high school students a unique gateway to the world of space exploration through the High School Aerospace Scholars (HAS) program. This initiative gives juniors hands-on experience, working on projects that range from designing spacecraft to planning Mars missions. 

Nearly 30 participants who have been hired by NASA in the past five years are HAS alumni. Their stories highlight the program’s impact on students—inspiring innovation, fostering collaboration, unlocking their potential as they move forward into STEM careers. 

Discover how the HAS experience has shaped these former students’ space exploration journey.  

Jaylon Collins: Designing the Future of Spaceflight 

Jaylon Collins always knew he wanted to study the universe but HAS shifted his perspective on what a STEM career could be. 

“HAS brought a newfound perspective on what my STEM career could look like, and that shift led me to where I am today,” Collins said. “The coursework, NASA-led seminars, and space exploration research showed me that I could do direct design work to aid humanity’s exploration of the cosmos. I didn’t want to only learn about our universe—I wanted to help explore it.” 

Three people pose in front of a large building outside. They are all holding up the hang loose sign.
Jaylon Collins with his parents at the University of Texas at Austin after being accepted as a student class of 2028.

“HAS showed me that a career in STEM doesn’t require a label, only your passion,” Collins said. “I saw that STEM could lead to endless career paths, and the guide was whatever I was most passionate about.” 

He saw firsthand how engineers tackle the challenges of spaceflight, from designing spacecraft to solving complex mission scenarios. His strong performance in the program earned him an invitation to Moonshot, a five-day virtual challenge where NASA scientists and engineers mentor students through an Artemis-themed mission. His team developed a Mars sample return mission, an experience that taught him valuable lessons in teamwork. 

“We combined our knowledge to design solutions that fit our mission profile, and I learned how problem-solving goes beyond the obvious tools like math and science,” he said. “Instead, it entails finding unique methods that trade off certain elements to bolster others and finding the optimal solution for our problem. HAS taught me to listen more than talk and take constructive feedback to create a solid plan.”

Now studying aerospace engineering at the University of Texas at Austin, Collins credits HAS with building his professional network and opening doors to NASA internship opportunities. 

“I learned so much from seminars, my peers, and my Moonshot mentors about not only my academic future but also my prospective career,” he said. “My HAS experience has granted me a web of internship opportunities at NASA through the Gateway Program, and I hope that I can leverage it soon in L’Space Academy’s Lucy Internship.” 

A group of people pose in front of a NASA meatball with a starry background. The people in the first two rows are kneeling down. Most of the people standing in the back row are wearing blue flight suits.
Jaylon Collins at Johnson Space Center with the 2024 astronaut graduate class. 

Collins hopes to contribute to NASA’s mission by developing solutions for deep space travel. Beyond that, he wants to inspire the next generation. 

“I believe that the goal of universal knowledge is to reverberate the passions I have onto other curious dreamers,” he said. “Having mentors who teach the curious is the way we progress and innovate as a society, and I am dedicated to being one of those mentors one day.” 

Erin Shimoda: Guiding Astronauts to Safety 

Erin Shimoda’s path to becoming an aerospace engineer did not start with a clear vision of her future. Growing up in a family full of engineers and scientists, she was already on the STEM path, but she did not know where to focus. HAS changed that. 

“HAS exposed me to so many different things that an aerospace engineer does,” she said. “I learned about the history of humans in space, NASA’s missions, how to design 3D models, how to apply equations from math class to real-life scenarios.” 

During the program’s summer experience, she and her team designed a mission to send humans to Mars. She credits the program with inspiring her to earn an aerospace engineering degree. 

jsc2021e027680.jpg?w=1639
Official portrait of Erin Shimoda.
NASA/Josh Valcarcel

The HAS program also reshaped her understanding of what a STEM career could look like. “My mentors were incredible. They talked about their projects with such energy and passion. It made me want to feel that way about my own work,” she said. “I didn’t realize before how exciting and innovative working in STEM could be.” 

Shimoda said every person she met through HAS was inspiring. “Just knowing that those people existed and worked at NASA helped push me to persevere and succeed in my undergraduate career. I had plenty of bumps in the road, but I had a goal in mind that others had achieved before me, so I knew I could, too.” 

One of the biggest lessons she took from the program was the power of collaboration. In high school, she often felt like she was carrying the load on group projects, which left her with a negative view of working on a team. HAS changed that perspective. 

“During HAS, everyone was very passionate about accomplishing our goal, so I was consistently supported by my peers,” she said. “That’s so true at NASA, too. Not one single person can build an entire mission to the Moon. We’re all so passionate about accomplishing the mission, so we always support each other and strive for excellence.”

Shimoda also saw firsthand how diverse perspectives lead to better results. “There are many ways to come to a solution, and not every solution is right,” she said. “Collaboration leads to innovation and better problem-solving.” 

An image of a woman in a green blouse smiling with her arms folded. She stands next to a rocket on a table.
Erin Shimoda stands in front of a presentation on the Launch Abort System for NASA’s Orion spacecraft and Space Launch System rocket.
NASA/Robert Markowitz

Now, Shimoda plays a key role in NASA’s Orion Program, ensuring astronaut safety through comprehensive ascent abort planning and procedures, and supporting Artemis recovery operations. She works on guidance, navigation, and control, predicting where the crew module and recovery hardware will land so teams—including the U.S. Navy—are in the right place at the right time. 

“It’s exciting because we get to go ‘in the field’ on a U.S. Navy ship during training. Last year, I spent a week on a Navy ship, and seeing everything come together was incredible,” she said. 

Her advice for students exploring STEM? “Try every opportunity possible! I joined almost every club imaginable. When I saw the HAS poster in front of my high school’s library, I thought to myself, ‘Well, I’m not in anything space-related yet!’ and the rest is history.” 

Looking ahead, she is eager for what is to come. “I’m especially excited for Artemis III, where I’ll be directly involved in recovery operations,” Shimoda said. “I hope that all this work propels us to a future with a sustained human presence on the Moon.” 

Hallel Chery: Aspiring Astronaut and Emerging Leader 

Hallel Chery is a high school senior who will pursue a degree in mechanical engineering and materials science at Harvard College, with her sights set on becoming both an engineer and an astronaut.  

She completed all three stages of HAS: the online course, the virtual Moonshot challenge, and the five-day on-site experience at Johnson. Balancing the program with academics and leading a school-wide tutoring club pushed her limits—but also broadened her confidence. 

“I learned that I could take on a tremendous amount of work at one time,” she said. “This realization has helped me become more ambitious in my future plans.” 

A girl smiles in a striped blouse and blue pants. She is wearing a blue lanyard. A window is behind her and it is a bright sunny day.
A portrait of Hallel Chery during her time in the High School Aerospace Scholars program.

Moonshot was her proving ground. Tasked with redesigning a module for NASA’s future Gateway lunar space station, she led a team of eight HAS scholars—none of whom she had met before—through an intense, weeklong mission. Their work was presented to NASA scientists and engineers and her group landed among the top teams in the challenge. 

“The experience strengthened my confidence in my abilities as a leader,” said Chery. “I learned that I thrive under pressure and am well prepared to tackle any challenge, technical or interpersonal, no matter how difficult it is.” 

“Moonshot exposed me for the first time to true, deep teamwork,” she said. “Interacting almost non-stop with the same people over one week in a high stakes situation truly taught me about the dynamics of how teams work, the value of teamwork, and being an effective leader. This, coupled with the program’s emphasis on the importance of teamwork have firmly ingrained in me the essentiality of this core NASA value.”  

While at Johnson, Chery toured the Space Vehicle Mockup Facility, watched astronauts suit up at the Neutral Buoyancy Laboratory, and visited the Mission Control Center. “Spending only a few days at Johnson, I can truly say that as an aspiring astronaut, being there felt just like home,” Chery said.  

A person smiles while posing inside a NASA space suit replica with their face visible through the helmet opening. The display is set up outdoors, with a NASA trailer and a fenced area in the background.
Hallel Chery in a spacesuit mockup at Johnson Space Center.

“Because of HAS, I directly visualize myself working in a team to solve the problems I wanted to tackle instead of primarily focusing on the individual accomplishments that will solve them,” she said. “The program taught me how essential teamwork is to effective problem solving and innovation.” 

 The advice she has for the next generation is to keep exploring and to answer the question: What do you want to contribute for the good of the world? 

HAS also introduced her to professional networking early in her academic career. Engaging with NASA professionals provided insight into the agency’s work culture and internship opportunities. 

Now, as she prepares for her future in mechanical engineering and materials science, Chery is determined to apply what she has learned. 

She is particularly grateful for the mentorship of NASA consultant Gotthard Janson, who provided encouragement and guidance throughout the HAS journey.  

“The opportunity to connect with great professionals like him has provided additional wisdom and support as I grow through my academic and professional career,” she said.  

Looking ahead, Chery aims to design space habitats, create innovative exercise solutions, and develop advanced materials for use in space.  

“I want to help propel humanity forward—on Earth, to the Moon, Mars, and beyond—while inspiring others in the Artemis Generation,” she said. “Building and launching my rocket at Johnson felt like launching my future—one dedicated to contributing to NASA and humanity.” 

Johnson Space Center will showcase its achievements at the Texas Capitol for Space Day Texas on Tuesday, March 25. The High School Aerospace Scholars program will have a booth, and NASA will have interactive exhibits highlighting the programs and technologies that will help humanity push forward to the Moon and Mars.

Learn more about NASA’s involvement here.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s X-59 quiet supersonic research aircraft sits on the ramp at Lockheed Martin Skunk Works in Palmdale, California during sunrise, shortly after completion of painting in December 2023.Credit: NASA/Steve Freeman As we observe National Aviation Day Tuesday – a tribute to Orville Wright’s birthday – let’s reflect on both America’s and NASA’s aviation heritage and share how we are pushing the boundaries of flight for the nation’s future. Modern NASA grew from the National Advisory Committee for Aeronautics (NACA), an agency created by Congress in 1915 to advance U.S. aviation. When President Eisenhower signed the National Aeronautics and Space Act of 1958, NACA was dissolved and its people, laboratories and research programs became the foundation of NASA. These intrepid men and women are the cornerstone of the world’s most capable aerospace industry and their legacy lives on today across all facets of the agency.
      The most significant aviation milestones in the twentieth century were achieved through both NASA and NACA research and through the courage of pioneering test pilots. In 1947, the joint NACA/U.S. Army Air Forces (later the U.S. Air Force, or USAF) developed Bell X‑1 flew faster than the speed of sound, shattering the mythical “sound barrier.” This breakthrough, enabled by NACA wind-tunnel data and high-speed aerodynamic expertise, made supersonic flight a reality and led directly to NACA Test Pilot Scott Crossfield being the first human to reach Mach 2, twice the speed of sound, in the Douglass DD558-II a mere six years later. During the X‑15 program of the 1960s, legendary NASA Test Pilots Joe Walker, John McKay, Neil Armstrong, Milt Thompson, and Bill Dana piloted nearly half of the program’s sorties and flew the rocket-powered research plane at altitudes up to 354,200 feet and speeds of 4,520 mph (Mach 6.7).
      The NASA/USAF-developed North American X‑15 became the world’s first reusable hypersonic aerospace vehicle, reaching space (above 50 miles altitude) on 11 separate missions; it provided essential data on materials, flight control and pilot physiology that helped shape the agency’s Mercury, Gemini, Apollo and Space Shuttle programs. These milestones remind us that our nation’s accomplishments are the result of visionary NASA, Department of Defense, industry engineers, and test pilots working together to achieve audacious goals.
      NASA’s commitment to aviation innovation did not stop with early experimental high-speed aircraft. In the 1990s, the U.S. general aviation industry faced a steep decline – production fell from 18,000 aircraft in 1978 to fewer than 1,000 in 1993. NASA saw an opportunity: we envisioned a Small Aircraft Transportation System in which safe, efficient general aviation planes could revitalize a critical industry. To enable that vision, NASA partnered with the Federal Aviation Administration, industry, universities, and non‑profits to create the Advanced General Aviation Transport Experiments (AGATE) consortium in 1994. The AGATE consortium developed safer cockpit displays, crashworthiness improvements, efficient airfoils, and modern manufacturing techniques. These innovations transformed U.S. general aviation, helping spawn industry successes like the Cirrus SR20 and SR22 family of aircraft, which incorporate NASA-derived composite structures and safety features.
      In 2004, NASA’s unmanned X‑43A Hyper-X broke world speed records for air‑breathing aircraft, flying at Mach 6.8 and later Mach 9.6. Those flights demonstrated practical scramjet propulsion and proved that hypersonic cruise flight is achievable.
      Today, we are building on this legacy and pushing the envelope with the X-59. Later this year, NASA Test Pilot Nils Larson will usher in a new era of quiet supersonic flight when he pilots the X‑59 Quesst’s first flight out of NASA’s Armstrong Flight Research Center in Edwards, California. The experimental aircraft, designed to fly at 1.4 times the speed of sound while producing only a gentle sonic “thump” instead of the traditional loud sonic boom, will provide data vital to achieving the vision in President Donald J. Trump’s Executive Order “Leading the World in Supersonic Flight.”
      Hypersonics research is another pillar to our 21st‑century vision. Lessons from the X‑15, X‑43, and Space Shuttle inform our study of high-temperature materials, flight controls and propulsion. These technologies will not only bolster national security but will also spur the development of ultrafast civil transports, shrinking the world even further. We are also investing in 21st century propulsion, additive manufacturing, and autonomy for light aircraft while also developing advanced air traffic control systems. Partnering with U.S. aerospace industry and the FAA, we will bring true 21st century technology into light general aviation aircraft, ensuring America remains at the forefront of aviation innovation.
      I am continually inspired by the ingenuity of our past and the promise of our future. Our roots in NACA remind us that a small group of dedicated men and women can change the world. From the Wright brothers’ pioneering work to the supersonic and hypersonic records set by NASA pilots and vehicles, we have consistently expanded the boundaries of what is possible in flight. Looking ahead, our pursuit of quiet supersonic aircraft, hypersonic technologies, and revitalized general aviation will keep the U.S. aviation industry strong and sustainable for decades to come. On National Aviation Day, we celebrate not only our history but also the teamwork and vision that will carry us into the next century of flight.
      Higher, Farther, Faster!

      Todd C. Ericson is a senior advisor to the NASA administrator for aerospace research and development

      Share
      Details
      Last Updated Aug 19, 2025 EditorJennifer M. Dooren Related Terms
      Aeronautics Flight Innovation NASA Aircraft Supersonic Flight View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Examines Low Brightness, High Interest Galaxy
      This NASA/ESA Hubble Space Telescope image features a portion of the spiral galaxy NGC 45. ESA/Hubble & NASA, D. Calzetti, R. Chandar; Acknowledgment: M. H. Özsaraç This NASA/ESA Hubble Space Telescope image zooms in on the feathery spiral arms of the galaxy NGC 45, which lies just 22 million light-years away in the constellation Cetus (the Whale).
      The portrait uses data drawn from two complementary observing programs. The first took a broad view of 50 nearby galaxies, leveraging Hubble’s ability to observe ultraviolet through visible into near-infrared light to study star formation in these galaxies. The second program examined many of the same nearby galaxies as the first, narrowing in on a particular wavelength of red light called H-alpha. Star-forming nebulae are powerful producers of H-alpha light, and several of these regions are visible across NGC 45 as bright pink-red patches.
      These observing programs aimed to study star formation in galaxies of different sizes, structures, and degrees of isolation — and NGC 45 is a particularly interesting target. Though it may appear to be a regular spiral galaxy, NGC 45 is a remarkable type called a low surface brightness galaxy.
      Low surface brightness galaxies are fainter than the night sky itself, making them incredibly difficult to detect. They appear unexpectedly faint because they have relatively few stars for the volume of gas and dark matter they carry. In the decades since astronomers serendipitously discovered the first low surface brightness galaxy in 1986, researchers have learned that 30–60% of all galaxies may fall into this category. Studying these hard-to-detect galaxies is key to understanding how galaxies form and evolve, and Hubble’s sensitive instruments are equal to the task.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share








      Details
      Last Updated Aug 14, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Galaxies, Stars, & Black Holes Hubble Space Telescope Spiral Galaxies Star-forming Nebulae Stars The Universe Keep Exploring Discover More Topics From Hubble
      35 Years of Hubble Images



      Hubble’s Night Sky Challenge



      Hearing Hubble



      3D Hubble Models


      View the full article
    • By Space Force
      The U.S. Space Force will host the Schriever Wargame Capstone 2025 at Maxwell AFB, bringing together more than 350 participants from the DoD, industry and partner nations to explore strategic challenges in a future conflict scenario.

      View the full article
    • By NASA
      Andy Burroughs (left) and Paul Friz in the roles of air taxi pilots running through air taxi integration simulations focusing on urban air space at NASA’s Langley Research in Hampton, Virginia on Sept. 25, 2024.Credit: NASA NASA’s latest open Software Catalog, released Wednesday, offers more than 1,200 downloadable codes developed by agency engineers that could enable faster solutions to energize the space economy and stimulate American ingenuity. The catalog is part of NASA’s effort to place advanced technologies, including agency software, into the hands of businesses, researchers, and entrepreneurs to foster economic growth and innovation.
      Agency developers will provide more information about the Software Catalog, the only repository of its kind in the federal government, during NASA’s summer software webinar series beginning Tuesday, July 22.
      “NASA has droves of talented experts creating software to automate elements of agency missions,” said Dan Lockney, program executive, Technology Transfer at NASA Headquarters in Washington. “The resulting efficiency benefits humankind, and its public value increases exponentially when the agency provides access to those software programs for companies, enabling them to save time and money, improve commercial offerings, and build their businesses.”
      The four webinars accompanying this year’s NASA Software Catalog feature developers of popular programs for mission planning, systems design, propulsion analysis, and more, each consisting of a presentation followed by a live question-and-answer session.
      Programs offered in NASA’s 2025-2026 Software Catalog are grouped into 15 categories that may be useful for organizations working with spacecraft and aircraft. For example, the Vehicle Management category includes a tool for designing satellite constellations and a software library for minimizing public safety risks around expendable launch vehicles. The Aeronautics section includes several programs that are widely used by industry for creating, modifying, and analyzing aircraft designs.
      Although the categories have specific themes, the codes are meant to be useful to various innovators. Companies can use aircraft programs NASA wrote to design cars, trucks, and countless other products. The catalog’s Business Systems and Project Management section includes software for estimating project costs, building and assessing complex schedules, and uncovering root causes of mishaps. Other popular programs support 3D rendering for simulation and virtual reality, bring hyper-accuracy to GPS tracking, and analyze electrical power system architectures.
      NASA released its first Software Catalog more than a decade ago in 2013, and since then, the agency’s annual rate of software downloads has skyrocketed, reaching up to 5,722 downloads in a single year.
      The Software Catalog is a product of NASA’s Technology Transfer program, managed by the agency’s Space Technology Mission Directorate. NASA routinely makes improvements to the Software Catalog website, ensuring the process is fast and easy. Access restrictions apply to some software that may be limited to use by U.S. citizens or for U.S. government purposes only.
      View and learn more about NASA’s Software Catalog by visiting:
      https://software.nasa.gov
      -end-
      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov   
      Share
      Details
      Last Updated Jul 16, 2025 LocationNASA Headquarters Related Terms
      Space Technology Mission Directorate Ames Research Center Armstrong Flight Research Center Glenn Research Center Johnson Space Center Kennedy Space Center Langley Research Center Marshall Space Flight Center NASA Headquarters Stennis Space Center View the full article
    • By NASA
      Melissa Harris’ official NASA portrait. NASA/Robert Markowitz With over 25 years of experience in human spaceflight programs, Melissa Harris has contributed to numerous programs and projects during key moments in NASA’s history. As the life cycle lead and Independent Review Team review manager for the Commercial Low Earth Orbit Development Program, she guides the agency through development initiatives leading to a new era of space exploration.  

      Harris grew up near NASA’s Johnson Space Center in Houston and spent time exploring the center and trying on astronaut helmets. She later earned her bachelor’s degree in legal studies from the University of Houston, master and subject matter expert certifications in configuration management, and ISO 9001 Lead Auditors Certification. When the opportunity arose, she jumped at the chance to join the International Space Station Program. 

      Harris (right) and her twin sister, Yvonne (left), at the Artemis I launch. Image courtesy of Melissa Harris Starting as a board specialist, Harris spent eight years supporting the space station program boards, panels, and flight reviews. Other areas of support included the International Space Station Mission Evaluation Room and the EVA Crew Systems and Robotics Division managing changes for the acquisition and building of mockups in the Neutral Buoyancy Laboratory and Space Vehicle Mockup Facility in Houston. She then took a leap to join the Constellation Program, developing and overseeing program and project office processes and procedures. Harris then transitioned to the Extravehicular Activity (EVA) Project Office where she was a member of the EVA 23 quality audit team tasked with reviewing data to determine the cause of an in-orbit failure. She also contributed to the Orion Program and Artemis campaign. After spending two years at Axiom Space, Harris returned to NASA and joined the commercial low Earth orbit team. 

      Harris said the biggest lesson she has learned during her career is that “there are always ups and downs and not everything works out, but if you just keep going and at the end of the day see that the hard work and dedication has paid off, it is always the proudest moment.”  

      Her dedication led to a nomination for the Stellar Award by the Rotary National Award for Space Achievement Foundation.

      Harris and her son, Tyler, at the Rotary National Award Banquet in 2024.Image courtesy of Melissa Harris Harris’ favorite part of her role at NASA is working “closely with brilliant minds” and being part of a dedicated and hard-working team that contributes to current space programs while also planning for future programs. Looking forward, she anticipates witnessing the vision and execution of a self-sustaining commercial market in low Earth orbit come to fruition. 

      Outside of work, Harris enjoys being with family, whether cooking on the back porch, over a campfire, or traveling both in and out of the country. She has been married for 26 years to her high school sweetheart, Steve, and has one son, Tyler. Her identical twin sister, Yvonne, also works at Johnson. 

      Harris and her twin sister Yvonne dressed as Mark and Scott Kelly for Halloween in 2024.Image courtesy of Melissa Harris Learn more about NASA’s Commercial Low Earth Orbit Development Program at: 
      www.nasa.gov/commercialspacestations
      View the full article
  • Check out these Videos

×
×
  • Create New...