Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 Min Read NASA Invests in Future STEM Workforce Through Space Grant Awards 
      NASA is awarding up to $870,000 annually to 52 institutions across the United States, the District of Columbia, and Puerto Rico over the next four years. The investments aim to create opportunities for the next generation of innovators by supporting workforce development, science, technology, engineering and math education, and aerospace collaboration nationwide. 
      The Space Grant College and Fellowship Program (Space Grant), established by Congress in 1989, is a workforce development initiative administered through NASA’s Office of STEM Engagement (OSTEM). The program’s mission is to produce a highly skilled workforce prepared to advance NASA’s mission and bolster the nation’s aerospace sector. 
      “The Space Grant program exemplifies NASA’s commitment to cultivating a new generation of STEM leaders,” said Torry Johnson, deputy associate administrator of the STEM Engagement Program at NASA Headquarters in Washington. “By partnering with institutions across the country, we ensure that students have the resources, mentorship, and experiences needed to thrive in the aerospace workforce.” 
      The following is a complete list of awardees: 
      University of Alaska, Fairbanks  University of Alabama, Huntsville  University of Arkansas, Little Rock  University of Arizona  University of California, San Diego  University of Colorado, Boulder  University of Hartford, Connecticut  American University, Washington, DC  University of Delaware  University of Central Florida  Georgia Institute of Technology  University of Hawaii, Honolulu  Iowa State University, Ames  University of Idaho, Moscow  University of Illinois, Urbana-Champaign  Purdue University, Indiana  Wichita State University, Kansas  University of Kentucky, Lexington  Louisiana State University and A&M College  Massachusetts Institute of Technology  Johns Hopkins University, Maryland  Maine Space Grant Consortium  University of Michigan, Ann Arbor  University of Minnesota  Missouri University of Science and Technology  University of Mississippi  Montana State University, Bozeman  North Carolina State University  University of North Dakota, Grand Forks  University of Nebraska, Omaha  University of New Hampshire, Durham  Rutgers University, New Brunswick, New Jersey  New Mexico State University  Nevada System of Higher Education  Cornell University, New York  Ohio Aerospace Institute  University of Oklahoma  Oregon State University  Pennsylvania State University  University of Puerto Rico  Brown University, Rhode Island  College of Charleston, South Carolina  South Dakota School of Mines & Technology  Vanderbilt University, Tennessee  University of Texas, Austin  University of Utah, Salt Lake City  Old Dominion University Research Foundation, Virginia  University of Vermont, Burlington  University of Washington, Seattle  Carthage College, Wisconsin  West Virginia University  University of Wyoming  Space Grant operates through state-based consortia, which include universities, university systems, associations, government agencies, industries, and informal education organizations engaged in aerospace activities. Each consortium’s lead institution coordinates efforts within its state, expanding opportunities for students and researchers while promoting collaboration with NASA and aerospace-related industries nationwide. 
      To learn more about NASA’s missions, visit: https://www.nasa.gov/ 

      View the full article
    • By NASA
      Inside a laboratory in the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida, a payload implementation team member harvests ‘Outredgeous’ romaine lettuce growing in the Advanced Plant Habitat ground unit on Thursday, April 24, 2025. The harvest is part of the ground control work supporting Plant Habitat-07, which launched to the International Space Station aboard NASA’s SpaceX 31st commercial resupply services mission.
      The experiment focuses on studying how optimal and suboptimal moisture conditions affect plant growth, nutrient content, and the plant microbiome in microgravity. Research like this continues NASA’s efforts to grow food that is not only safe but also nutritious for astronauts living and working in the harsh environment of space.
      The ‘Outredgeous’ romaine lettuce variety was first grown aboard the space station in 2014, and Plant Habitat-07 builds on that legacy, using the station’s Advanced Plant Habitat to expand understanding of how plants adapt to spaceflight conditions. Findings from this work will support future long-duration missions to the Moon, Mars, and beyond, and could also lead to agricultural advances here on Earth.
      Image credit: NASA/Kim Shiflett
      View the full article
    • By NASA
      NASA In this photo taken on Feb. 8, 1984, NASA astronaut Ronald E. McNair plays his saxophone while off-duty during the STS-41B mission. He and fellow crew members Vance D. Brand, Robert L. Gibson, Robert L. Stewart, and Bruce McCandless II launched on the space shuttle Challenger from NASA’s Kennedy Space Center in Florida on Feb. 3, 1984. During the mission, McCandless and Stewart performed the first untethered spacewalks.
      McNair, who was nationally recognized for his work in laser physics, was selected as an astronaut candidate in January 1978. He completed a one-year training and evaluation period in August 1979, qualifying him for assignment as a mission specialist astronaut on space shuttle flight crews. STS-41B was his first flight.
      Check out STS-41B mission highlights, narrated by the crew.
      Image credit: NASA
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Nemanja Jovanovic, lead instrument scientist at Caltech, presents at the Emerging Technologies for Astrophysics workshop, held at NASA’s Ames Research Center in California’s Silicon Valley. The workshop brought together experts in astrophysics to discuss how advanced technologies could impact future mission planning.NASA/Donald Richey The future of astrophysics research could unlock the secrets of the universe, and emerging technologies like artificial intelligence, quantum sensing, and advanced materials may hold the key to faster, more efficient discovery. Advancements and implementations of new technologies are imperative for observational astrophysics to achieve the next level of detection.
      NASA’s Emerging Technologies for Astrophysics workshop brought together subject matter experts from industry, government, and academia to explore the state of new and disruptive technologies. The meeting was an effort to identify specific applications for astrophysics missions and better understand how their infusion into future NASA space telescopes could be accelerated.
      The workshop took place at NASA’s Ames Research Center in California’s Silicon Valley,. supporting the agency’s efforts to make partnership with public and private industry and collaborative mission planning possible.
      “The profound questions about the nature of our universe that astrophysics at NASA answers require giant leaps in technology,” explained Mario Perez, chief technologist for the Astrophysics Division at NASA Headquarters in Washington. “Spotting potential in early-stage tech by encouraging discussions between imaginative researchers helps expand the scope of science and lessen the time required to achieve the next generation of astrophysics missions.”
      Emerging technologies like artificial intelligence can support the design and optimization of future missions, and participants focused efforts on combining technologies to push research further. “Cross-pollination” of advanced materials like composites with advanced manufacturing, metamaterials, and photonic chips could support advancement in imaging missions beyond existing mechanical stability needs.
      The United Nations Educational, Scientific and Cultural Organization (UNESCO) has dubbed 2025 the “International Year of Quantum Science and Technology” in recognition of a century of quantum mechanics. Workshop participants discussed how quantum sensing could enable more precise measurements, achieve “super resolution” by filling in missing details in lower resolution images, and provide greater capabilities in forthcoming space telescopes.
      “This gathering of experts was an opportunity to find ways where we can increase the capabilities of future space instrumentation and accelerate technology development for infusion into NASA astrophysics missions,” said Naseem Rangwala, astrophysics branch chief at NASA Ames. “We can speed up the process of how we develop these future projects by using the emerging technologies that are incubated right here in Silicon Valley.”
      The findings from this workshop and ongoing discussions will support efforts to study and invest in technologies to advance astrophysics missions with greater speed and efficiency.
      About the Author
      Tara Friesen

      Share
      Details
      Last Updated Apr 29, 2025 Related Terms
      Ames Research Center Astrophysics Astrophysics Division General Science Mission Directorate Explore More
      3 min read Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!
      NASA needs your help identifying the shapes of thousands of galaxies in images taken by…
      Article 2 hours ago 3 min read In the Starlight: Jason Phillips’ Unexpected Path to Johnson Procurement
      Article 6 hours ago 2 min read How Are We Made of Star Stuff? We Asked a NASA Expert: Episode 58
      Article 20 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space
      3D wind measurements from NASA's Aerosol Wind Profiler instrument flying on board a specially mounted aircraft along the East Coast of the U.S. and across the Great Lakes region on Oct. 15, 2024. Credits: NASA/Scientific Visualization Studio Since last fall, NASA scientists have flown an advanced 3D Doppler wind lidar instrument across the United States to collect nearly 100 hours of data — including a flight through a hurricane. The goal? To demonstrate the unique capability of the Aerosol Wind Profiler (AWP) instrument to gather extremely precise measurements of wind direction, wind speed, and aerosol concentration – all crucial elements for accurate weather forecasting.
      Weather phenomena like severe thunderstorms and hurricanes develop rapidly, so improving predictions requires more accurate wind observations.
      “There is a lack of global wind measurements above Earth’s surface,” explained Kris Bedka, the AWP principal investigator at NASA’s Langley Research Center in Hampton, Virginia. “Winds are measured by commercial aircraft as they fly to their destinations and by weather balloons launched up to twice per day from just 1,300 sites across the globe. From space, winds are estimated by tracking cloud and water vapor movement from satellite images.”
      However, in areas without clouds or where water vapor patterns cannot be easily tracked, there are typically no reliable wind measurements. The AWP instrument seeks to fill these gaps with detailed 3D wind profiles.
      The AWP instrument (foreground) and HALO instrument (background) was integrated onto the floorboard of NASA’s G-III aircraft. Kris Bedka, project principal investigator, sitting in the rear of the plane, monitored the data during a flight on Sept. 26, 2024. NASA/Maurice Cross Mounted to an aircraft with viewing ports underneath it, AWP emits 200 laser energy pulses per second that scatter and reflect off aerosol particles — such as pollution, dust, smoke, sea salt, and clouds — in the air. Aerosol and cloud particle movement causes the laser pulse wavelength to change, a concept known as the Doppler effect.
      The AWP instrument sends these pulses in two directions, oriented 90 degrees apart from each other. Combined, they create a 3D profile of wind vectors, representing both wind speed and direction.
      We are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.
      Kris bedka
      NASA Research Physical Scientist
      “The Aerosol Wind Profiler is able to measure wind speed and direction, but not just at one given point,” Bedka said. “Instead, we are measuring winds at different altitudes in the atmosphere simultaneously with extremely high detail and accuracy.”
      Vectors help researchers and meteorologists understand the weather, so AWP’s measurements could significantly advance weather modeling and forecasting. For this reason, the instrument was chosen to be part of the National Oceanic and Atmospheric Administration’s (NOAA) Joint Venture Program, which seeks data from new technologies that can fill gaps in current weather forecasting systems. NASA’s Weather Program also saw mutual benefit in NOAA’s investments and provided additional support to increase the return on investment for both agencies.
      On board NASA’s Gulfstream III (G-III) aircraft, AWP was paired with the agency’s High-Altitude Lidar Observatory (HALO) that measures water vapor, aerosols, and cloud properties through a combined differential absorption and high spectral resolution lidar.
      Working together for the first time, AWP measured winds, HALO collected water vapor and aerosol data, and NOAA dropsondes (small instruments dropped from a tube in the bottom of the aircraft) gathered temperature, water vapor, and wind data.
      The AWP and HALO instrument teams observing incoming data on board NASA’s G-III aircraft over Tennessee while heading south to observe Hurricane Helene. Sept. 26, 2024. NASA/Maurice Cross “With our instrument package on board small, affordable-to-operate aircraft, we have a very powerful capability,” said Bedka. “The combination of AWP and HALO is NASA’s next-generation airborne weather remote sensing package, which we hope to also fly aboard satellites to benefit everyone across the globe.”
      The combination of AWP and HALO is NASA's next-generation airborne weather remote sensing package.
      kris bedka
      NASA Research Physical Scientist
      The animation below, based on AWP data, shows the complexity and structure of aerosol layers present in the atmosphere. Current prediction models do not accurately simulate how aerosols are organized throughout the breadth of the atmosphere, said Bedka.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This visualization shows AWP 3D measurements gathered on Oct. 15, 2024, as NASA’s G-III aircraft flew along the East Coast of the U.S. and across the Great Lakes region. Laser light that returns to AWP as backscatter from aerosol particles and clouds allows for measurement of wind direction, speed, and aerosol concentration as seen in the separation of data layers. NASA/Scientific Visualization Studio “When we took off on this particular day, I thought that we would be finding a clear atmosphere with little to no aerosol return because we were flying into what was the first real blast of cool Canadian air of the fall,” described Bedka. “What we found was quite the opposite: an aerosol-rich environment which provided excellent signal to accurately measure winds.” 
      During the Joint Venture flights, Hurricane Helene was making landfall in Florida. The AWP crew of two pilots and five science team members quickly created a flight plan to gather wind measurements along the outer bands of the severe storm.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This video shows monitors tracking the AWP science team’s location in the western outer bands of Hurricane Helene off the coast of Florida with views outside of the aircraft looking at turbulent storm clouds on Sept. 26, 2024. NASA/Kris Bedka “A 3D wind profile can significantly improve weather forecasts, particularly for storms and hurricanes,” said Harshesh Patel, NOAA’s acting Joint Venture Program manager. “NASA Langley specializes in the development of coherent Doppler wind lidar technology and this AWP concept has potential to provide better performance for NOAA’s needs.”
      The flight plan of NASA’s G-III aircraft – outfitted with the Aerosol Wind Profiler – as it gathered data across the Southeastern U.S. and flew through portions of Hurricane Helene on Sept. 26, 2024. The flight plan is overlaid atop a NOAA Geostationary Operational Environmental Satellite-16 (GOES) satellite image from that day. NASA/John Cooney The flights of the AWP lidar are serving as a proving ground for possible integration into a future satellite mission.
      “The need to improve global 3D wind models requires a space-based platform,” added Patel. “Instruments like AWP have specific space-based applications that potentially align with NOAA’s mission to provide critical data for improving weather forecasting.”
      A view of the outer bands of Hurricane Helene off the coast of Florida during NASA’s science flights demonstrating the Aerosol Wind Profiler instrument on Sept. 26, 2024.NASA/Maurice Cross After the NOAA flights, AWP and HALO were sent to central California for the Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment  and the Active Passive profiling Experiment, which was supported by NASA’s Planetary Boundary Layer Decadal Survey Incubation Program and NASA Weather Programs. These missions studied atmospheric processes within the planetary boundary layer, the lowest part of the atmosphere, that drives the weather conditions we experience on the ground. 
      To learn more about lidar instruments at NASA visit:
      NASA Langley Research Center: Generations of Lidar Expertise
      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Apr 28, 2025 LocationNASA Langley Research Center Related Terms
      General Airborne Science Clouds Langley Research Center Explore More
      3 min read Lunar Space Station Module for NASA’s Artemis Campaign to Begin Final Outfitting
      Article 3 days ago 4 min read Navigation Technology
      Article 3 days ago 3 min read NASA Tracks Snowmelt to Improve Water Management
      Article 4 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...