Jump to content

NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture


Recommended Posts

  • Publishers
Posted
8 Min Read

NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture

Near the center of the Everglades National Park, a dense layer of sawgrass covers the ground — receding towards a line of tall, slender trees that sway in the breeze. Behind the trees, large cumulonimbus clouds loom over the scene.
Florida’s coastal wetlands are a complex patchwork of ecosystem — consisting of sawgrass marshland, hardwood hammocks, freshwater swamps, and mangrove forests.
Credits:
NASA/ Nathan Marder

Across the street from the Flamingo Visitor’s Center at the foot of Florida’s Everglades National Park, there was once a thriving mangrove population — part of the largest stand of mangroves in the Western Hemisphere. Now, the skeletal remains of the trees form one of the Everglades’ largest ghost forests.

When Hurricane Irma made landfall in September 2017 as a category 4 storm, violent winds battered the shore and a storm surge swept across the coast, decimating large swaths of mangrove forest. Seven years later, most of the mangroves here haven’t seen any new growth. “At this point, I doubt they’ll recover,” said David Lagomasino, a professor of coastal studies at East Carolina University.

Lagomasino was in the Everglades conducting fieldwork as part of NASA’s BlueFlux Campaign, a three-year project that aims to study how sub-tropical wetlands influence atmospheric levels of carbon dioxide (CO2) and methane. Both gases absorb solar radiation and have a warming effect on Earth’s atmosphere.

A photo of a barren mangrove stand demonstrates the spectral atmosphere of Florida’s “ghost forests.” Very few of the trees have leaves.
A mangrove “ghost forest” near Florida’s southernmost coast houses the remains of a once-thriving mangrove stand.
NASA/Nathan Marder

The campaign is led by Ben Poulter, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who studies the way human activity and climate change affect the carbon cycle. As wetland vegetation responds to increasing temperatures, rising sea levels, and severe weather, Poulter’s team is trying to determine how much carbon dioxide wetland vegetation removes from the atmosphere and how much methane it produces. Ultimately this research will help scientists develop models to estimate and monitor greenhouse gas concentrations in coastal areas around the globe.

Although coastal wetlands account for less than 2% of the planet’s land-surface area, they remove a significant amount of carbon dioxide from the atmosphere. Florida’s coastal wetlands alone remove an estimated 31.8 million metric tons each year. A commercial aircraft would have to circle the globe more than 26,000 times to produce the same amount of carbon dioxide. Coastal wetlands also store carbon in marine sediments, keeping it underground — and out of the atmosphere — for thousands of years. This carbon storage capacity of oceans and wetlands is so robust that it has its own name: blue carbon.

“We’re worried about losing that stored carbon,” Poulter said. “But blue carbon also offers tremendous opportunities for climate mitigation if conservation and restoration are properly supported by science.”

The one-meter core samples collected by Lagomasino will be used to identify historic rates of blue carbon development in mangrove forests and to evaluate how rates of carbon storage respond to specific environmental pressures, like sea level rise or the increasing frequency of tropical cyclones.

Early findings from space-based flux data confirm that, in addition to acting as a sink of carbon dioxide, tropical wetlands are a significant source of methane — a greenhouse gas that traps heat roughly 80 times more efficiently than carbon dioxide. In fact, researchers estimate that Florida’s entire wetland expanse produces enough methane to offset the benefits of wetland carbon removal by about 5%.

Everglades peat contains history of captured carbon

During his most recent fieldwork deployment, Lagomasino used a small skiff to taxi from one research site to the next; many parts of the Everglades are virtually unreachable on foot. At each site, he opened a broad, black case and removed a metallic peat auger, which resembles a giant letter opener. The instrument is designed to extract core samples from soft soils. Everglades peat — which is composed almost entirely of the carbon-rich, partially decomposed roots, stems, and leaves of mangroves — offers a perfect study subject.

Lagomasino plunged the auger into the soil, using his body weight to push the instrument into the ground. Once the sample was secured, he freed the tool from the Earth, presenting a half-cylinder of soil. Each sample was sealed and shipped back to the lab — where they are sliced horizontally into flat discs and analyzed for their age and carbon content.

David Lagomasino drives a small, white skiff through a narrow channel lined with mangroves, which stick out of the water on either side of the boat as. David’s PhD student, Lola Babanawo, sits on the edge of the boat holding her cap.
East Carolina University professor of coastal studies David Lagomasino (right) and his doctoral student Daystar Babanawo explore the Everglades by boat. The plant life here consists almost entirely of mangroves, which can withstand the saltwater tides that characterize coastal wetlands. Scientific studies of Florida’s coastal ecosystems have historically been limited by the relative inaccessibility of the region.
NASA/Nathan Marder

Everglades peat forms quickly. In Florida’s mangrove forests, around 2 to 10 millimeters of soil are added to the forest floor each year, building up over time like sand filling an hourglass. Much like an ice core, sediment cores offer a window into Earth’s past. The deeper the core, the further into the past one can see. By looking closely at the contents of the soil, researchers can uncover information about the climate conditions from the time the soil formed.

In some parts of the Everglades, soil deposits can reach depths of up to 3 meters (10 feet), where one meter might represent close to 100 years of peat accumulation, Lagomasino said. Deep in the Amazon rainforest, by comparison, a similarly sized, one-meter deposit could take more than 1,000 years to develop. This is important in the context of restoration efforts: in coastal wetlands, peat losses can be restored up to 10 times faster than they might be in other forest types.

A small patch of Everglades peat sits on top of the Russian peat auger. David holds the auger and the sample amongst a thicket of mangrove branches and leaves.
Lagomasino holds a sample of peat soil collected from the forest floor. The source of the soil’s elevated carbon content — evident from its coarse, fibrous texture — is primarily the thread-like root hairs routinely recycled by the surrounding mangroves. The presence of water slows the decomposition of this organic material, which is why wetlands can lock carbon away and prevent it from escaping into the atmosphere for thousands of years.
NASA/Nathan Marder

“There are also significant differences in fluxes between healthy mangroves and degraded ones,” said Lola Fatoyinbo, a research scientist in the Biospheric Sciences Laboratory at NASA’s Goddard Space Flight Center. In areas where mangrove forests are suffering, for example, after a major hurricane, “you end up with more greenhouse gases in the atmosphere,” she said. As wetland ecology responds to intensifying natural and human pressures, the data product will help researchers precisely monitor the impact of ecological changes on global carbon dioxide and methane levels.

Wetland methane: A naturally occurring but potent greenhouse gas

Methane is naturally produced by microbes that live in wetland soils. But as wetland conditions change, the growth rate of methane-producing microbes can spike, releasing the gas into the atmosphere at prodigious rates.

Since methane is a significantly more potent greenhouse gas than carbon dioxide, possessing a warming potential 84 times greater over a 25-year period, methane emissions undermine some of the beneficial services that blue carbon ecosystems provide as natural sinks for atmospheric carbon dioxide.

While Lagomasino studied the soil to understand long-term storage of greenhouse gases, Lola Fatoyinbo, a research scientist in NASA’s Biospheric Sciences Lab, and Peter Raymond, an ecologist at Yale University’s School of the Environment, measured the rate at which these gases are exchanged between wetland vegetation and the atmosphere. This metric is known as gaseous flux.

A small patch of Everglades peat sits on top of the Russian peat auger. Lagomasino holds the auger and the sample in a thicket of mangrove branches and leaves.
Lagomasino holds a sample of peat soil collected from the forest floor. The presence of water slows the decomposition of this organic material, which is why wetlands can lock carbon away and prevent it from escaping into the atmosphere for thousands of years. NASA/Nathan Marder
NASA/Nathan Marder

The scientists measure flux using chambers designed to adhere neatly to points where significant rates of gas exchange occur. They secure box-like chambers to above-ground roots and branches while domed chambers measure gas escaping from the forest floor. The concentration of gases trapped in each chamber is measured over time.

In general, as the health of wetland ecology declines, less carbon dioxide is removed, and more methane is released. But the exact nature of the relationship between wetland health and gaseous flux is not well understood. What does flux look like in ghost forests, for example? And how do more subtle changes in variables like canopy coverage or species distribution influence levels of carbon dioxide sequestration or methane production?

“We’re especially interested in the methane part,” Fatoyinbo said. “It’s the least understood, and there’s a lot more of it than we previously thought.”

Based on data collected during BlueFlux fieldwork, “we’re finding that coastal wetlands remove massive amounts of carbon dioxide and produce substantial amounts of methane,” Poulter said. “But overall, these ecosystems appear to provide a net climate benefit, removing more greenhouse gases than they produce.” That could change as Florida’s wetlands respond to continued climate disturbances.

The future of South Florida’s ecology

Florida’s wetlands are roughly 5,000 years old. But in just the past century, more than half of the state’s original wetland coverage has been lost as vegetation was cleared and water was drained to accommodate the growing population. The Everglades system now contains 65% less peat and 77% less stored carbon than it did prior to drainage. The future of the ecosystem — which is not only an important reservoir for atmospheric carbon, but a source of drinking water for more than 7 million Floridians and a home to flora and fauna found nowhere else on Earth — is uncertain.

Scientists who have dedicated their careers to understanding and restoring South Florida’s ecology are hopeful. “Nature and people can coexist,” said Meenakshi Chabba, an ecologist and resilience scientist at the Everglades Foundation in Florida’s Miami-Dade County. “But we need good science and good management to reach that goal.”

The next step for NASA’s BlueFlux campaign is the development of a satellite-based data product that can help regional stakeholders evaluate in real-time how Florida’s wetlands are responding to restoration efforts designed to protect one of the state’s most precious natural resources — and all those who depend on it.

By Nathan Marder

NASA’s Goddard Space Flight Center, Greenbelt, Maryland

About the Author

Nathan Marder

Share

Details

Last Updated
Mar 13, 2025
Editor
Jenny Marder
Contact
Nathan Marder

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Robert Williams is a senior mechanical design engineer and the structures subject matter expert in the Engineering and Test Directorate at NASA’s Stennis Space Center.NASA/Danny Nowlin Living up to, and maintaining, the standard of excellence associated with NASA is what drives Robert Williams at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      A native of Gulfport, Mississippi, Williams said he has had the opportunity to work with and be mentored by “some truly exceptional” engineers, some with careers reaching back to the Apollo era.
      “I cannot overstate the vast amount of practical knowledge and experience we have at NASA Stennis,” Williams said. “We know how to get things done, and if we do not know, I can guarantee we will figure it out.”
      Williams is a senior mechanical design engineer and the structures subject matter expert for the NASA Stennis Engineering and Test Directorate.
      He provides technical oversight related to engineering mechanics and machine design by reviewing analysis and design packages from NASA Stennis contractors and NASA engineers for ongoing projects.
      Williams also supports projects by performing analysis and creating detailed models, drawings, and system level designs, mostly at the versatile four-stand E Test Complex, where NASA Stennis has 12 active test cells capable of various component, engine, and stage test activities to support the agency and commercial companies.
      In support of NASA’s Artemis campaign of returning astronauts to the Moon, Williams also has reviewed structural and pipe stress analysis for the exploration upper stage project that will test a new SLS (Space Launch System) rocket stage to fly on future Artemis missions.
      He performed similar review work for Green Run testing of the SLS core stage at NASA Stennis ahead of the successful launch of the Artemis I uncrewed mission around the Moon. 
      Overall, Williams has been a part of projects on every test stand throughout more than eight years with NASA and five years as a contractor. He has been tasked with solving challenging problems, both individually and as a part of teams.
      There were times when he was not sure if he or the team would be able to solve the problem or address it effectively, but each time, the NASA Stennis team found a way.
      “Over the span of my career, I have yet to be in a situation where the challenge was not met,” he said.
      The opportunity to work with “pretty much all the major space companies in some capacity” is most interesting to Williams. “The best thing is that being a small organization within a relatively small center, there are always opportunities to develop new skills and capabilities to help fill a need or gap,” he said.
      No matter the task, Williams looks forward to supporting space innovation while living up to, and maintaining, the standard of excellence associated with NASA for the benefit of all. 
      Explore More
      3 min read Lagniappe for April 2025
      Article 4 weeks ago 4 min read Lagniappe for March 2025
      Article 2 months ago 6 min read NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel
      Article 2 months ago View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s SPHEREx mission is observing the entire sky in 102 infrared colors, or wavelengths of light not visible to the human eye. This image shows a section of sky in one wavelength (3.29 microns), revealing a cloud of dust made of a molecule similar to soot or smoke.NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), but the dust cloud is no longer visible. The molecules that compose the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color.NASA/JPL-Caltech After weeks of preparation, the space observatory has begun its science mission, taking about 3,600 unique images per day to create a map of the cosmos like no other.
      Launched on March 11, NASA’s SPHEREx space observatory has spent the last six weeks undergoing checkouts, calibrations, and other activities to ensure it is working as it should. Now it’s mapping the entire sky — not just a large part of it — to chart the positions of hundreds of millions of galaxies in 3D to answer some big questions about the universe. On May 1, the spacecraft began regular science operations, which consist of taking about 3,600 images per day for the next two years to provide new insights about the origins of the universe, galaxies, and the ingredients for life in the Milky Way.
      This video shows SPHEREx’s field of view as it scans across one section of sky inside the Large Magellanic Cloud, with rainbow colors representing the infrared wavelengths the telescope’s detectors see. The view from one detector array moves from purple to green, followed by the second array’s view, which changes from yellow to red. The images are looped four times. NASA/JPL-Caltech “Thanks to the hard work of teams across NASA, industry, and academia that built this mission, SPHEREx is operating just as we’d expected and will produce maps of the full sky unlike any we’ve had before,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “This new observatory is adding to the suite of space-based astrophysics survey missions leading up to the launch of NASA’s Nancy Grace Roman Space Telescope. Together with these other missions, SPHEREx will play a key role in answering the big questions about the universe we tackle at NASA every day.”
      From its perch in Earth orbit, SPHEREx peers into the darkness, pointing away from the planet and the Sun. The observatory will complete more than 11,000 orbits over its 25 months of planned survey operations, circling Earth about 14½ times a day. It orbits Earth from north to south, passing over the poles, and each day it takes images along one circular strip of the sky. As the days pass and the planet moves around the Sun, SPHEREx’s field of view shifts as well so that after six months, the observatory will have looked out into space in every direction.
      When SPHEREx takes a picture of the sky, the light is sent to six detectors that each produces a unique image capturing different wavelengths of light. These groups of six images are called an exposure, and SPHEREx takes about 600 exposures per day. When it’s done with one exposure, the whole observatory shifts position — the mirrors and detectors don’t move as they do on some other telescopes. Rather than using thrusters, SPHEREx relies on a system of reaction wheels, which spin inside the spacecraft to control its orientation.
      Hundreds of thousands of SPHEREx’s images will be digitally woven together to create four all-sky maps in two years. By mapping the entire sky, the mission will provide new insights about what happened in the first fraction of a second after the big bang. In that brief instant, an event called cosmic inflation caused the universe to expand a trillion-trillionfold.
      “We’re going to study what happened on the smallest size scales in the universe’s earliest moments by looking at the modern universe on the largest scales,” said Jim Fanson, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Southern California. “I think there’s a poetic arc to that.”
      Cosmic inflation subtly influenced the distribution of matter in the universe, and clues about how such an event could happen are written into the positions of galaxies across the universe. When cosmic inflation began, the universe was smaller than the size of an atom, but the properties of that early universe were stretched out and influence what we see today. No other known event or process involves the amount of energy that would have been required to drive cosmic inflation, so studying it presents a unique opportunity to understand more deeply how our universe works.
      “Some of us have been working toward this goal for 12 years,” said Jamie Bock, the mission’s principal investigator at Caltech and JPL. “The performance of the instrument is as good as we hoped. That means we’re going to be able to do all the amazing science we planned on and perhaps even get some unexpected discoveries.”
      Color Field
      The SPHEREx observatory won’t be the first to map the entire sky, but it will be the first to do so in so many colors. It observes 102 wavelengths, or colors, of infrared light, which are undetectable to the human eye. Through a technique called spectroscopy, the telescope separates the light into wavelengths — much like a prism creates a rainbow from sunlight — revealing all kinds of information about cosmic sources.
      For example, spectroscopy can be harnessed to determine the distance to a faraway galaxy, information that can be used to turn a 2D map of those galaxies into a 3D one. The technique will also enable the mission to measure the collective glow from all the galaxies that ever existed and see how that glow has changed over cosmic time.
      And spectroscopy can reveal the composition of objects. Using this capability, the mission is searching for water and other key ingredients for life in these systems in our galaxy. It’s thought that the water in Earth’s oceans originated as frozen water molecules attached to dust in the interstellar cloud where the Sun formed.
      The SPHEREx mission will make over 9 million observations of interstellar clouds in the Milky Way, mapping these materials across the galaxy and helping scientists understand how different conditions can affect the chemistry that produced many of the compounds found on Earth today.
      More About SPHEREx
      The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      For more about SPHEREx, visit:
      https://science.nasa.gov/mission/spherex/
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-063
      Share
      Details
      Last Updated May 01, 2025 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Jet Propulsion Laboratory The Search for Life The Universe Explore More
      4 min read NASA’s Chandra Diagnoses Cause of Fracture in Galactic “Bone”
      Article 3 hours ago 3 min read The Universe’s Brightest Lights Have Some Dark Origins
      Did you know some of the brightest sources of light in the sky come from…
      Article 1 day ago 8 min read How to Contribute to Citizen Science with NASA
      A cell phone, a computer—and your curiosity—is all you need to become a NASA citizen…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      X-ray: NASA/CXC/Northwestern Univ./F. Yusef-Zadeh et al; Radio: NRF/SARAO/MeerKat; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers have discovered a likely explanation for a fracture in a huge cosmic “bone” in the Milky Way galaxy, using NASA’s Chandra X-ray Observatory and radio telescopes.
      The bone appears to have been struck by a fast-moving, rapidly spinning neutron star, or pulsar. Neutron stars are the densest known stars and form from the collapse and explosion of massive stars. They often receive a powerful kick from these explosions, sending them away from the explosion’s location at high speeds.
      Enormous structures resembling bones or snakes are found near the center of the galaxy. These elongated formations are seen in radio waves and are threaded by magnetic fields running parallel to them. The radio waves are caused by energized particles spiraling along the magnetic fields.
      X-ray: NASA/CXC/Northwestern Univ./F. Yusef-Zadeh et al; Radio: NRF/SARAO/MeerKat; Image Processing: NASA/CXC/SAO/N. Wolk This new image shows one of these cosmic “bones” called G359.13142-0.20005 (G359.13 for short), with X-ray data from Chandra (colored blue) and radio data from the MeerKAT radio array in South Africa (colored gray). Researchers also refer to G359.13 as the Snake.
      Examining this image closely reveals the presence of a break, or fracture, in the otherwise continuous length of G359.13 seen in the image. The combined X-ray and radio data provides clues to the cause of this fracture.
      Astronomers have now discovered an X-ray and radio source at the location of the fracture, using the data from Chandra and MeerKAT and the National Science Foundation’s Very Large Array. A likely pulsar responsible for these radio and X-ray signals is labeled. A possible extra source of X-rays located near the pulsar may come from electrons and positrons (the anti-matter counterparts to electrons) that have been accelerated to high energies.
      The researchers think the pulsar likely caused the fracture by smashing into G359.13 at a speed between one million and two million miles per hour. This collision distorted the magnetic field in the bone, causing the radio signal to also become warped.
      At about 230 light-years long, G359.13 is one of the longest and brightest of these structures in the Milky Way. To put this into context, there are more than 800 stars within that distance from Earth. G359.13 is located about 26,000 light-years from Earth, near the center of the Milky Way.
      A paper describing these results appeared in the May 2024 issue of the Monthly Notices of the Royal Astronomical Society and is available here. The authors of the study are Farhad Yusuf-Zadeh (Northwestern University), Jun-Hui Zhao (Center for Astrophysics | Harvard & Smithsonian), Rick Arendt (University of Maryland, Baltimore County), Mark Wardle (Macquarie University, Australia), Craig Heinke (University of Alberta), Marc Royster (College of the Sequoias, California), Cornelia Lang (University of Iowa), and Joseph Michail (Northwestern).
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Learn More
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features two composite images of a long, thin, cosmic structure. With the structure’s vertical orientation, seemingly fragile dimensions, and pale grey color against the blackness of space, the images resemble medical X-rays of a long, thin, bone. The main image shows the structure in its entirety. The inset image is an annotated close-up highlighting an apparent fracture in the bone-like structure.
      The structure, called G359.13, or “The Snake”, is a Galactic Center Filament. These filament formations are threaded by parallel magnetic fields, and spiraling, energized particles. The particles cause radio waves, which can be detected by radio arrays, in this case by the MeerKAT array in South Africa.
      In the first composite image, the largely straight filament stretches from the top to the bottom of the vertical frame. At each end of the grey filament is a hazy grey cloud. The only color in the image is neon blue, found in a few specks which dot the blackness surrounding the structure. The blue represents X-rays seen by NASA’s Chandra X-ray Observatory.
      In the annotated close-up, one such speck appears to be interacting with the structure itself. This is a fast-moving, rapidly spinning neutron star, otherwise known as a pulsar. Astronomers believe that this pulsar has struck the filament halfway down its length, distorting the magnetic field and radio signal.
      In both images, this distortion resembles a small break, or spur, in the bone-like filament.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      3 Min Read NASA Invests in Future STEM Workforce Through Space Grant Awards 
      NASA is awarding up to $870,000 annually to 52 institutions across the United States, the District of Columbia, and Puerto Rico over the next four years. The investments aim to create opportunities for the next generation of innovators by supporting workforce development, science, technology, engineering and math education, and aerospace collaboration nationwide. 
      The Space Grant College and Fellowship Program (Space Grant), established by Congress in 1989, is a workforce development initiative administered through NASA’s Office of STEM Engagement (OSTEM). The program’s mission is to produce a highly skilled workforce prepared to advance NASA’s mission and bolster the nation’s aerospace sector. 
      “The Space Grant program exemplifies NASA’s commitment to cultivating a new generation of STEM leaders,” said Torry Johnson, deputy associate administrator of the STEM Engagement Program at NASA Headquarters in Washington. “By partnering with institutions across the country, we ensure that students have the resources, mentorship, and experiences needed to thrive in the aerospace workforce.” 
      The following is a complete list of awardees: 
      University of Alaska, Fairbanks  University of Alabama, Huntsville  University of Arkansas, Little Rock  University of Arizona  University of California, San Diego  University of Colorado, Boulder  University of Hartford, Connecticut  American University, Washington, DC  University of Delaware  University of Central Florida  Georgia Institute of Technology  University of Hawaii, Honolulu  Iowa State University, Ames  University of Idaho, Moscow  University of Illinois, Urbana-Champaign  Purdue University, Indiana  Wichita State University, Kansas  University of Kentucky, Lexington  Louisiana State University and A&M College  Massachusetts Institute of Technology  Johns Hopkins University, Maryland  Maine Space Grant Consortium  University of Michigan, Ann Arbor  University of Minnesota  Missouri University of Science and Technology  University of Mississippi  Montana State University, Bozeman  North Carolina State University  University of North Dakota, Grand Forks  University of Nebraska, Omaha  University of New Hampshire, Durham  Rutgers University, New Brunswick, New Jersey  New Mexico State University  Nevada System of Higher Education  Cornell University, New York  Ohio Aerospace Institute  University of Oklahoma  Oregon State University  Pennsylvania State University  University of Puerto Rico  Brown University, Rhode Island  College of Charleston, South Carolina  South Dakota School of Mines & Technology  Vanderbilt University, Tennessee  University of Texas, Austin  University of Utah, Salt Lake City  Old Dominion University Research Foundation, Virginia  University of Vermont, Burlington  University of Washington, Seattle  Carthage College, Wisconsin  West Virginia University  University of Wyoming  Space Grant operates through state-based consortia, which include universities, university systems, associations, government agencies, industries, and informal education organizations engaged in aerospace activities. Each consortium’s lead institution coordinates efforts within its state, expanding opportunities for students and researchers while promoting collaboration with NASA and aerospace-related industries nationwide. 
      To learn more about NASA’s missions, visit: https://www.nasa.gov/ 

      View the full article
    • By NASA
      Inside a laboratory in the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida, a payload implementation team member harvests ‘Outredgeous’ romaine lettuce growing in the Advanced Plant Habitat ground unit on Thursday, April 24, 2025. The harvest is part of the ground control work supporting Plant Habitat-07, which launched to the International Space Station aboard NASA’s SpaceX 31st commercial resupply services mission.
      The experiment focuses on studying how optimal and suboptimal moisture conditions affect plant growth, nutrient content, and the plant microbiome in microgravity. Research like this continues NASA’s efforts to grow food that is not only safe but also nutritious for astronauts living and working in the harsh environment of space.
      The ‘Outredgeous’ romaine lettuce variety was first grown aboard the space station in 2014, and Plant Habitat-07 builds on that legacy, using the station’s Advanced Plant Habitat to expand understanding of how plants adapt to spaceflight conditions. Findings from this work will support future long-duration missions to the Moon, Mars, and beyond, and could also lead to agricultural advances here on Earth.
      Image credit: NASA/Kim Shiflett
      View the full article
  • Check out these Videos

×
×
  • Create New...