Jump to content

The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science


Recommended Posts

  • Publishers
Posted
Feature Article header

13 min read

The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science

Introduction

Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a workhorse in NASA’s Airborne Science Program (ASP)—see Photo 1. The aircraft, located at NASA’s Armstrong Flight Research Center (AFRC) in California, flew countless missions as a science laboratory, producing science data that supports projects serving the world’s scientific community, particularly the NASA Earth science community. NASA recently decided to retire the venerable DC-8 aircraft, which made its last science flight in April 2024. The DC-8 is being replaced with a similarly refurbished Boeing 777 aircraft, which will be even more capable than the DC-8.

DC8 Photo 1
Photo 1. NASA’s DC-8 flying laboratory flew Earth science missions for NASA’s. Airborne Science Program (ASP) from 1987–2024. The versatile aircraft was used to conduct a variety of research experiments that spanned all seven continents.
Photo credit: Lori Losey [NASA’s Armstrong Flight Research Center (AFRC)]

More information is available about the full history of ASP, its primary objectives, and its many achievements in an archived article: see “Flying in the ‘Gap’ Between Earth and Space: NASA’s Airborne Science Program” [The Earth Observer, September–October 2020, 32:5, 4–14].

Workshop Overview

The NASA History Office and NASA Earth Science Division cohosted a workshop, titled “Contributions of the DC-8 to Earth System Science at NASA,” on October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC – see Photo 2.

The agenda included not just the DC-8’s contributions to Earth Science at NASA, but also its role supporting the Aeronautics Research Mission Directorate and work in space science. Many DC-8 veterans – including several who are now retired – attended the event in person or online. The program consisted of six panels and roundtables, each calling attention to a unique aspect of the DC-8 story.

DC8 Photo 2
Photo 2. Group photo of the in person and remote participants of the workshop on “Contributions of the DC-8 to Earth System Science at NASA,” which took place October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC.
Photo credit: Rafael Luis Méndez Peña [NASA’s Ames Research Center, Earth Science Program Office]

The event featured 38 individuals (speakers, panelists, and moderators) from NASA HQ, five NASA centers, eight universities, the Search for Extraterrestrial Intelligence Institute, and the National Oceanic and Atmospheric Administration. In addition, Spanish filmmaker Rafael Luis Méndez Peña debuted a trailer for his documentary film, NASA-817, on October 24 and took photographs during the workshop. The ??? agenda a workshop recording ???, and other related materials are available through the NASA History Office.

The Tale of the NASA DC-8

The article follows the outline of the workshop that places the DC-8 in the context of the overall history of NASA aircraft observations, science campaigns, community, and international collaboration, education and outreach activities.

A History in Context: the DC-8 and NASA’s Airborne Science Program

NASA’s involvement in airborne science extends to the agency’s inception. The National Aeronautics and Space Act of 1958 states that NASA’s first objective shall be “the expansion of human knowledge of phenomena in the atmosphere and space.” Subsequent legislation expanded NASA’s role in atmospheric and Earth system science. To fulfill this objective, NASA maintains a fleet of airborne platforms through ASP – see Figure –to study the environment, develop new technologies, verify satellite data, and monitor space vehicle activity.

DC8 Figure
Figure. The DC-8 was but one aircraft is NASA’s sizeable Airborne Science Fleet – which is maintained and operated by ASP. Note that in addition to a variety of piloted aircraft operating at different altitudes shown in this drawing, NASA also operates uncrewed aircraft systems and even uses kites to conduct Earth observations.
Figure credit: NASA Science Suborbital Platforms, NASA’s Goddard Space Flight Center, Science Support Office

NASA operated two large flying laboratories prior to the DC-8 Airborne Science Laboratory. Both aircraft were converted Convair (CV) 990s. Regrettably, both aircraft succumbed to catastrophic accidents. The first, known as Galileo, collided with a U.S. Navy P-3 Orion near Moffett Field, CA, in April 1973, killing 11 NASA personnel. Its replacement, Galileo II, crashed on takeoff at March Air Force Base in July 1985. While there were no fatalities in the second accident, the ensuing fire consumed the aircraft and its instruments. The loss of Galileo II left a gaping hole in NASA’s ability to conduct essential scientific and engineering research.

In January 1986, after months of bureaucratic scrambling, NASA finalized the purchase of former commercial airliner (DC-8-72) for $24 million, which included costs to modify the aircraft to carry a science payload and crew. The modified DC-8 Airborne Science Laboratory—shown in Photo 2— arrived at NASA Ames Research Center during the Summer of 1987.

Overview Presentations on Airborne Science

Jack Kaye [NASA Headquarters—Associate Director for Research of the Earth Science Division] gave the meeting’s opening remarks, where he placed the DC-8’s activities in a larger perspective. He noted that one of the features that makes airborne science so unique at NASA is the combination of platforms, sensors, systems, people, and opportunities. The DC-8 was able to carry a large number of people as well as instruments to carry out long-range operations under diverse conditions.

“[The DC-8 offered] a really versatile, flexible platform that’s allowed for lots of science,” said Kaye.

Later in the meeting, Karen St. Germain [NASA Headquarters—Director of the Earth Science Division] built upon Kaye’s comments. She noted that while NASA’s satellite missions receive most of the public’s attention, airborne science is an essential part of the NASA mission.

“This is the grassroots of science,” she stressed. “It’s where a lot of the great ideas are born. It’s where a lot of the fledgling sensor technologies are demonstrated.”

First Flight for the DC-8

NASA routinely conducts field campaigns – where ground observations are timed and coordinated with aircraft flights (often at more than one altitude) and with satellite overpasses to gain a comprehensive (multilayered, multiscale) picture of the atmosphere over a certain area. A more detailed account of two NASA field campaigns from the 1980s and 1990s, and their follow-up missions, is available in an archived article: see “Reflections on FIFE and BOREAS: Historical Perspective and Meeting Summary” [The Earth Observer, January–February 2017, 29:1, 6–23]. The article illustrates scaled observations as they were conducted during FIFE and BOREAS.

Researchers first used the DC-8 Airborne Science Laboratory on a high-profile interagency field campaign – Antarctic Airborne Ozone Expedition (AAOE), the first airborne experiment to study the chemistry and dynamics of the Antarctic ozone hole. The scientific data collected during AAOE produced unequivocable evidence that human-made chemicals were involved in the destruction of ozone over the Antarctic. This data served as a major impetus toward the enactment of amendments to the Montreal Protocol, which banned the manufacture of chlorofluorocarbons.

Estelle Condon [NASA’s Ames Research Center (ARC), emeritus] was a program manager for AAOE. During the meeting, she shared her memories of the hectic days leading up to the DC-8’s first mission.

“There was an enormous task in front of [the aircraft team] – just a huge task – to get all the relay racks, all the wiring, all the ports for the windows designed and built so that when the scientists finally came, all that instrumentation could actually be put on the aircraft,” said Condon. She added that the ARC staff worked day and night and every weekend to make the plane ready.

“It’s a miracle that they were able to put everything together and get it to the tip of South America in time for the mission,” she said.

Other Noteworthy Field Campaigns Involving the DC-8

The DC-8 would go on to be used in many other field campaigns throughout its 37-year history

and was central to several of NASA’s research disciplines. For example, Michael Kurylo [NASA Headquarters—Atmospheric Composition Program Scientist] was the manager of NASA’s Upper Atmosphere Research Program, where he developed, promoted, and implemented an extramural research program in stratospheric and upper tropospheric composition and directed its advanced planning at a national and international level. Kurylo summarized the DC-8’s many flights to study stratospheric chemistry beyond the AAOE missions.

Kurylo also discussed the DC-8’s role in tropospheric chemistry investigations, especially through the many field campaigns that were conducted as part of the Global Troposphere Experiment (GTE). He also touched on the culture of NASA airborne science and the dynamic that existed between scientists and those who operated and maintained the aircraft.  “The scientists were always referred to [by NASA pilots and groundcrew] as ‘coneheads’…. Too much college, not enough high school,” Kurylo explained. But he and his colleagues have such fond memories of their time spent working together onboard the DC-8. 

James Crawford [NASA’s Langley Research Center], a project scientist for many of the GTE campaigns, explained that from 1983–2001 16 GTE aircraft-based missions, each with its own name and location, took place. Each mission collected a rich set of data records of atmospheric observations and on many occasions the data were used as baselines for subsequent campaigns. The DC-8 was one of several NASA aircraft involved, the others being the Corvair-990, Electra, and P-3B.

Joshua Schwarz [NOAA’s Chemical Sciencc Laboratory] discussed the airplane’s role in global atmospheric monitoring.  He recall thinking, after his first experience with the DC-8 that this flying airborne laboratory, “…was going to make things possible that wouldn’t otherwise be possible,” Schwarz concluded after his first encounter with the DC-8.

Other workshop participants went on to describe how – for nearly four decades – investigators used data collected by instruments on the DC-8 to conduct research and write papers on important scientific and engineering topics.

The People Behind the Aircraft: The DC-8 Community

The DC-8 was a large and durable aircraft capable of long-range flights, which made it ideal for conducting scientific research. Around these research efforts a strong community emerged. Over three decades, the DC-8 accommodated many investigators from NASA, interagency offices, U.S. universities, and international organizations on extended global missions. Agency officials also moved the DC-8 base of operations several times between 1986 and 2024, thereby demanding tremendous cross-center cooperation.

“Looking around the room, it’s clear that what brought us together [for the workshop] is more than just an aircraft,” said Nickelle Reid [NASA’s Armstrong Flight Research Center]. “It’s been a shared commitment, decades of passion and dedication from scientists, yes, but also mechanics, technicians, integration engineers, project managers, mission planners, operations engineers, flight engineers, mission directors, mission managers, logistics technicians and, of course, pilots. This village of people has been the beating heart of the DC-8 program.”

This DC-8 community was well represented at this workshop and played a key role in its success.

The DC-8 as a Means of International Engagement

The DC-8 community expanded beyond the U.S., opening unique opportunities for international engagement. The campaigns of the DC-8 Airborne Science Laboratory routinely involved foreign students, institutions, and governments. For example, the Korea–U.S. Air Quality (KORUS-AQ) campaign, an international cooperative air quality field study in Korea, took place in 2016. For more information about this campaign, see the archived Earth Observer article, “Flying in the ‘Gap’ Between Earth and Space: NASA’s Airborne Science Program” [The Earth Observer, September–October 2022, 32:5, 4–14].

Yunling Lou [NASA/Jet Propulsion Laboratory] spoke to the workshop audience about the value of international collaboration.

“I think [international collaboration] really helped – not just doing the collaboration [to accomplish a specific mission] but doing the training, the capacity building in these countries to build the community of global scientists and engineers,” said Lou.

Trina Dryal [LaRC—Deputy Director] continued that the DC-8 and NASA’s other airborne assets are more than just science laboratories.

“[They] are opportunities for science, diplomacy, international collaboration, cross learning, educational inspiration, and goodwill,” said Dryal—see Photo 3.

DC8 Photo 3
Photo 3. International collaborations included educational endeavors.  Here, Walter Klein [AFRC—DC-8 Mission Manager] poses with a group of Chilean students onboard the DC-8 Airborne Science Laboratory in Punta Arenas, Chile, March 2004.
Photo credit: Jim Closs [NASA’s Langley Research Center]

Student Investigations on the DC-8

Closer to home, the flying scientific laboratory affected the lives of many U.S. students and early career professionals. NASA’s Student Airborne Research Program (SARP), is an eight-week summer internship for rising-senior undergraduates that takes place annually on the East and West coasts of the U.S – see Photo 4. During the program, students gain hands-on experience conducting all aspects of a scientific campaign. They conduct field research, analyze the data, and gain access to one or more of NASA’s ASP flying science laboratories.  Since 2009, this program alone has provided hands on experience in conducting NASA Earth science research to XXXX students.

Berry Lefer [NASA Headquarters—Tropospheric Composition Program Manager] pointed out that SARP helped to integrate American students into DC-8 scientific missions.

“I want to make sure the NASA historians understand that the DC-8 is the premier flying laboratory on the planet, bar none,” said Lefer. “You’ve seen over the whole three-decade life of the DC-8 that education and outreach, student involvement has been a hallmark of the DC-8 [program].”

Yaitza Luna-Cruz [NASA Headquarters—Program Executive] was one among several SARP alumni who delivered testimony on the impact of the SARP program at the workshop.

“SARP unleashed my potential in ways that I cannot even describe,” said Luna-Cruz. “You never know what a single opportunity could do to shape the career of a student or early career researcher.

Luna-Cruz hopes these efforts continue with the coming of NASA’s new Boeing 777 airborne laboratory.

DC8 Photo 4
DC8 Photo 4
Photo 4. One of the most popular student investigations flown on the DC-8 (and other ASP aircraft) was (is) the Student Airborne Research Program (SARP), in which upper-level undergraduate students can gain valuable hands-on experience conducting field research.  Students taking part in SARP and their mentors posed with the DC-8 at AFRC in 2019 [top] and in 2022 [bottom]. The 2022 SARP group flew flights over California’s Central Valley to study air quality.
Photo credit: [Top] NASA; [bottom] Lauren Hughes [ARC]

Final Flight and Retirement of the DC-8

The DC-8 Airborne Science Laboratory flew its last science flight during the international Airborne and Satellite Investigation of Asian Air Quality mission (ASIA-AQ) in April 2024. Since its final flight, the aircraft has been retired to Idaho State University (ISU). Today, students in ISU’s aircraft maintenance program work on the airplane to develop real-world technical skills – continuing the DC-8’s mission as an educational platform. According to Gerald Anhorn [ISU—Dean of College of Technology], ISU students have a unique opportuning to gain experience working on a legendary research aircraft.

“Our students have that opportunity because of [NASA’s] donation” to the school, said Auborn.

Conclusion: Flying Toward the Future – From DC-8 to Boeing 777

While the DC-8 is retiring from active service, airborne observations continue to be a vital part of NASA’s mission. The agency recently acquired a Boeing 777and will modify it to support its ongoing airborne scientific research efforts. This new addition expands beyond the capacity of the DC-8 by allowing for even longer flights with larger payloads and more researchers to gather data. Several members of the Boeing 777 team from NASA’s Langley Research Center (LaRC) attended the workshop.

 “I mentioned I was in charge of the ‘replacement’ for the DC-8,” said Martin Nowicki [LaRC—Boeing 777 Lead]. “Over the last two days, here, it’s become pretty apparent that there’s no ‘replacing’ the DC-8. It’s carved out its own place in history. It’s just done so much.”

Nowicki looks forward to working with workshop participants to identify useful lessons of the past for future operators. He concluded that the Boeing 777 will carry the legacy of the DC-8 and continue with capturing the amazing science of ASP.

Black Separator Line

Acknowledgments

The authors wish to thank Jack Kaye [NASA HQ—Associate Director of Research for the Earth Science Division] for his helpful reviews of the article draft.  The first author also wishes to thank Lisa Frazier [NASA Headquarters—Strategic Events and Engagement Lead] for providing support and assistance throughout for the in-person workshop participants. and to the Earth Science Project Office team from NASA’s Ames Research Center, who performed essential conference tasks, such as website construction, audio-visual support, and food service management. This article is an enhanced version of the first author’s summary, which appeared in the Spring 2025 issue of News & Notes – The NASA History Office’s newsletter.

Black Separator Line

Bradley L. Coleman
NASA’s Marshall Space Flight Center, NASA History Office
bradley.l.coleman@nasa.gov

Alan B. Ward
NASA’s Goddard Space Flight Center/Global Science & Technology Inc.
alan.b.ward@nasa.gov

Share

Details

Last Updated
Mar 11, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The next era of lunar exploration demands a new kind of wheel – one that can sprint across razor-sharp regolith, shrug off extremely cold nights, and keep a rover rolling day after lunar day. The Rock and Roll with NASA Challenge seeks that breakthrough. If you can imagine a lightweight, compliant wheel that stays tough at higher speeds while carrying lots of  cargo, your ideas could set the pace for surface missions to follow. For this phased Challenge, Phase 1 rewards the best concepts and analyses, Phase 2 funds prototypes, and Phase 3 puts the best wheels through a live obstacle course simulating the lunar terrain. Along the way, you’ll receive feedback from NASA mobility engineers and the chance to see your hardware pushed to its limits.  In Phase 3, to prove concepts, NASA is using MicroChariot, a nimble, 45 kg test rover that will test the best designs from Phase 1 & Phase 2 at the Johnson Space Center Rockyard in Houston, Texas. Whether you’re a student team, a garage inventor, or a seasoned aerospace firm, this is your opportunity to rewrite the playbook of planetary mobility and leave tread marks on the future of exploration. Follow the challenge, assemble your crew, and roll out a solution that takes humanity back to the Moon.
      Award: $155,000 in total prizes
      Open Date: Phase 1 – August 28, 2025; Phase 2 – January 2026; Phase 3 – May 2026
      Close Date: Phase 1 – November 4, 2025; Phase 2 – April 2026; Phase 3 – June 2026
      For more information, visit: https://www.herox.com/NASARockandRoll
      View the full article
    • By NASA
      Amit KshatriyaCredit: NASA Acting NASA Administrator Sean P. Duffy Wednesday named Amit Kshatriya as the new associate administrator of NASA, the agency’s top civil service role.
      A 20-year NASA veteran, Kshatriya was most recently the deputy in charge of the Moon to Mars Program in the Exploration Systems Development Mission Directorate (ESDMD) at NASA Headquarters in Washington. In this role, Kshatriya was responsible for program planning and implementation for crewed missions to the Moon through the Artemis campaign in preparation for humanity’s first mission to Mars.
      Promoting Kshatriya to NASA’s top ranks puts America’s return to the Moon through Artemis at the very core of our agency. The move exemplifies President Donald J. Trump and Duffy’s seriousness about returning Americans to the Moon and before China.
      “Amit has spent more than two decades as a dedicated public servant at NASA, working to advance American leadership in space. Under his leadership, the agency will chart a bold vision to return to the Moon during President Trump’s term,” said Duffy. “Amit’s knowledge, integrity, and unwavering commitment to pioneering a new era of exploration make him uniquely qualified to lead our agency as associate administrator. With Amit we’ll continue to push the boundaries of what’s possible.”
      Kshatriya’s promotion also signals how the Trump Administration sees the commercial space sector as an American economic engine. By putting a proven leader at the top, NASA is set to partner even more closely with America’s booming space industry, grow the space economy, and ensure the future of exploration is built in the United States.
      Born in Wisconsin, educated at California Institute of Technology and the University of Texas at Austin, Kshatriya is one of only about 100 people in history to serve as a mission control flight director. He brings unparalleled operational and strategic experience to NASA’s executive leadership team.
      -end-
      Bethany Stevens
      Headquarters, Washington
      771-216-2606
      bethany.c.stevens@nasa.gov

      View the full article
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      NASA’s Human Lander Challenge (HuLC) is an initiative supporting its Exploration Systems Development Mission Directorate’s (ESDMD’s) efforts to explore innovative solutions for a variety of known technology development areas for human landing systems (HLS). Landers are used to safely ferry astronauts to and from the lunar surface as part of the mission architecture for NASA’s Artemis campaign. Through this challenge, college students contribute to the advancement of HLS technologies, concepts, and approaches. Improvements in these technology areas have the potential to revolutionize NASA’s approach to space exploration, and contributions from the academic community are a valuable part of the journey to discovery. HuLC is open to teams comprised of full-time or part-time undergraduate and/or graduate students at an accredited U.S.-based community college, college, or university. HuLC projects allow students to incorporate their coursework into real aerospace design concepts and work together in a team environment. Interdisciplinary teams are encouraged.
      Award: $126,000 in total prizes
      Open Date: August 29, 2025
      Close Date: March 4, 2026
      For more information, visit: https://hulc.nianet.org/
      View the full article
    • By NASA
      Skywatching Skywatching Home What’s Up Meteor Showers Eclipses Daily Moon Guide More Tips & Guides Skywatching FAQ Night Sky Network Saturn’s spectacle, a Conjunction, and the Autumnal Equinox
      Saturn shines throughout the month, a conjunction sparkles in the sky, and we welcome the autumnal equinox. 
      Skywatching Highlights
      All of September: Saturn is visible Sept. 19: A conjunction between the Moon, Venus, and Regulus Sept. 21: Saturn is at opposition Sept. 22: The autumnal equinox Transcript
      What’s Up for September? Saturn puts on a spectacular show, a sunrise conjunction shines bright, and we ring in the autumnal equinox.
      Saturn at Opposition
      Saturn will be putting on an out-of-this-world performance this month. 
      While Venus and Jupiter shine in the eastern morning sky, the ringed planet will be incredibly bright in the sky throughout September in the eastern evening sky and western early morning sky.
      But why is Saturn the star of the show? Well, on September 21, Saturn will be at opposition, meaning Earth will find itself in between Saturn and the Sun, temporarily lined up. 
      This also means that Saturn is at its closest and brightest all year! 
      Saturn will be visible with just your eyes in the night sky, but with a small telescope, you might be able to see its rings!
      Sky chart showing Saturn in the western sky before sunrise in late September. NASA/JPL-Caltech Conjunction Trio
      If you look to the east just before sunrise on September 19, you’ll see a trio of celestial objects in a magnificent conjunction. 
      In the early pre-dawn hours, look east toward the waning, crescent Moon setting in the sky and you’ll notice something peculiar.
      The Moon will be nestled up right next to both Venus and Regulus, one of the brightest stars in the night sky. 
      The three are part of a conjunction, which simply means that they look close together in the sky (even if they’re actually far apart in space). 
      To find this conjunction, just look to the Moon. 
      And if you want some additional astronomical context, or want to specifically locate Regulus, this star lies within the constellation Leo, the lion. 
      Sky chart showing a conjunction between the Moon, Venus, and Regulus in the eastern sky before sunrise on September 19, 2025 NASA/JPL-Caltech The Autumnal Equinox
      On September 22, we mark the autumnal equinox or the official start of fall in the northern hemisphere. 
      Astronomically, this is the time when the Sun finds itself exactly above the equator.
      On this day, our planet isn’t tilted toward or away from the Sun, and both day and night are almost exactly 12 hours (with a few small exceptions). 
      An illustrated panel from an animation showing Earth’s positioning during the autumnal equinox. NASA/JPL-Caltech Moon Phases + Conclusion
      Here are the phases of the Moon for September.
      You can stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov.
      I’m Chelsea Gohd from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
      The phases of the Moon for September 2025. NASA/JPL-Caltech Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...