Jump to content

Recommended Posts

  • Publishers
Posted

NASA received the upper stage for the agency’s Artemis II SLS (Space Launch System) rocket on Mar. 4 supplied by Boeing and United Launch Alliance (ULA). Known as the interim cryogenic propulsion stage, it arrived at the Multi Payload Processing Facility (MPPF) at NASA’s Kennedy Space Center in Florida.

The upper stage traveled to the spaceport from ULA’s Delta Operations Center at Cape Canaveral Space Force Station.

While at the MPPF, technicians will fuel the SLS upper stage with hydrazine for its reaction control system before transporting it to the center’s Vehicle Assembly Building for integration with SLS rocket elements atop mobile launcher 1. The rocket’s solid rocket booster segments are already assembled for launch and the core stage soon will be integrated, as will the launch vehicle stage adapter. The upper stage will be mated to the adapter.

The four-story propulsion system is powered by an RL10 engine, which will provide Orion with the boost it needs to orbit Earth twice before venturing toward the Moon.

Photo Credit: United Launch Alliance and NASA/Skip Williams

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Landing on the Moon is not easy, particularly when a crew or spacecraft must meet exacting requirements. For Artemis missions to the lunar surface, those requirements include an ability to land within an area about as wide as a football field in any lighting condition amid tough terrain.

      NASA’s official lunar landing requirement is to be able to land within 50 meters (164 feet) of the targeted site and developing precision tools and technologies is critically important to mission success.

      NASA engineers recently took a major step toward safe and precise landings on the Moon – and eventually Mars and icy worlds – with a successful field test of hazard detection technology at NASA’s Kennedy Space Center Shuttle Landing Facility in Florida.

      A joint team from the Aeroscience and Flight Mechanics Division at NASA’s Johnson Space Center’s in Houston and Goddard Space Flight Center in Greenbelt, Maryland, achieved this huge milestone in tests  of the Goddard Hazard Detection Lidar from a helicopter at Kennedy in March 2025. 

      NASA’s Hazard Detection Lidar field test team at Kennedy Space Center’s Shuttle Landing Facility in Florida in March 2025. NASA The new lidar system is one of several sensors being developed as part of NASA’s Safe & Precise Landing – Integrated Capabilities Evolution (SPLICE) Program, a Johnson-managed cross-agency initiative under the Space Technology Mission Directorate to develop next-generation landing technologies for planetary exploration. SPLICE is an integrated descent and landing system composed of avionics, sensors, and algorithms that support specialized navigation, guidance, and image processing techniques. SPLICE is designed to enable landing in hard-to-reach and unknown areas that are of potentially high scientific interest.

      The lidar system, which can map an area equivalent to two football fields in just two seconds, is a crucial program component. In real time and compensating for lander motion, it processes 15 million short pulses of laser light to quickly scan surfaces and create real-time, 3D maps of landing sites to support precision landing and hazard avoidance. 

      Those maps will be read by the SPLICE Descent and Landing Computer, a high-performance multicore computer processor unit that analyzes all SPLICE sensor data and determines the spacecraft’s velocity, altitude, and terrain hazards. It also computes the hazards and determines a safe landing location. The computer was developed by the Avionics Systems Division at Johnson as a platform to test navigation, guidance, and flight software. It previously flew on Blue Origin’s New Shepard booster rocket.

      The NASA team prepares the Descent and Landing Computer for Hazard Detection Lidar field testing at Kennedy Space Center. NASA For the field test at Kennedy, Johnson led test operations and provided avionics and guidance, navigation, and control support. Engineers updated the computer’s firmware and software to support command and data interfacing with the lidar system. Team members from Johnson’s Flight Mechanics branch also designed a simplified motion compensation algorithm and NASA’s Jet Propulsion Laboratory in Southern California contributed a hazard detection algorithm, both of which were added to the lidar software by Goddard. Support from NASA contractors Draper Laboratories and Jacobs Engineering played key roles in the test’s success.

      Primary flight test objectives were achieved on the first day of testing, allowing the lidar team time to explore different settings and firmware updates to improve system performance. The data confirmed the sensor’s capability in a challenging, vibration-heavy environment, producing usable maps. Preliminary review of the recorded sensor data shows excellent reconstruction of the hazard field terrain.

      A Hazard Detection Lidar scan of a simulated hazard field at Kennedy Space Center (left) and a combined 3D map identifying roughness and slope hazards. NASA Beyond lunar applications, SPLICE technologies are being considered for use on Mars Sample Return, the Europa Lander, Commercial Lunar Payload Services flights, and Gateway. The DLC design is also being evaluated for potential avionics upgrades on Artemis systems.

      Additionally, SPLICE is supporting software tests for the Advancement of Geometric Methods for Active Terrain Relative Navigation (ATRN) Center Innovation Fund project, which is also part of Johnson’s Aeroscience and Flight Mechanics Division. The ATRN is working to develop algorithms and software that can use data from any active sensor – one measuring signals that were reflected, refracted, or scattered by a body’s surface or its atmosphere – to accurately map terrain and provide absolute and relative location information. With this type of system in place, spacecraft will not need external lighting sources to find landing sites.

      With additional suborbital flight tests planned through 2026, the SPLICE team is laying the groundwork for safer, more autonomous landings on the Moon, Mars, and beyond. As NASA prepares for its next era of exploration, SPLICE will be a key part of the agency’s evolving landing, guidance, and navigation capabilities.
      Explore More
      2 min read NASA Gathers Experts to Discuss Emerging Technologies in Astrophysics
      Article 2 hours ago 2 min read NASA Technology Enables Leaps in Artificial Intelligence
      Artificial intelligence lets machines communicate autonomously
      Article 2 hours ago 3 min read In the Starlight: Jason Phillips’ Unexpected Path to Johnson Procurement
      Article 7 hours ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Gateway’s HALO module at Northrop Grumman’s facility in Gilbert, Arizona, on April 4, 2025, shortly after its arrival from Thales Alenia Space in Turin, Italy. NASA/Josh Valcarcel NASA continues to mark progress on plans to work with commercial and international partners as part of the Gateway program. The primary structure of HALO (Habitation and Logistics Outpost) arrived at Northrop Grumman’s facility in Gilbert, Arizona, where it will undergo final outfitting and verification testing.
      HALO will provide Artemis astronauts with space to live, work, and conduct scientific research. The habitation module will be equipped with essential systems including command and control, data handling, energy storage, power distribution, and thermal regulation.
      Following HALO’s arrival on April 1 from Thales Alenia Space in Turin, Italy, where it was assembled, NASA and Northrop Grumman hosted an April 24 event to acknowledge the milestone, and the module’s significance to lunar exploration. The event opened with remarks by representatives from Northrop Grumman and NASA, including NASA’s Acting Associate Administrator for Exploration Systems Development Lori Glaze, Gateway Program Manager Jon Olansen, and NASA astronaut Randy Bresnik. Event attendees, including Senior Advisor to the NASA Administrator Todd Ericson, elected officials, and local industry and academic leaders, viewed HALO and virtual reality demonstrations during a tour of the facilities.
      Dr. Lori Glaze, acting associate administrator for NASA’s Exploration Systems Development Mission Directorate, and Dr. Jon B. Olansen, Gateway Program manager, on stage during an April 24, 2025, event at Northrop Grumman’s facility in Gilbert, Arizona, commemorating HALO’s arrival in the United States. Northrop Grumman While the module is in Arizona, HALO engineers and technicians will install propellant lines for fluid transfer and electrical lines for power and data transfer. Radiators will be attached for the thermal control system, as well as racks to house life support hardware, power equipment, flight computers, and avionics systems. Several mechanisms will be mounted to enable docking of the Orion spacecraft, lunar landers, and visiting spacecraft.
      Launching on top of HALO is the ESA (European Space Agency)-provided Lunar Link system which will enable communication between crewed and robotic systems on the Moon and to mission control on Earth. Once these systems are installed, the components will be tested as an integrated spacecraft and subjected to thermal vacuum, acoustics, vibration, and shock testing to ensure the spacecraft is ready to perform in the harsh conditions of deep space.
      In tandem with HALO’s outfitting at Northrop Grumman, the Power and Propulsion Element – a powerful solar electric propulsion system – is being assembled at Maxar Space Systems in Palo Alto, California. Solar electric propulsion uses energy collected from solar panels converted to electricity to create xenon ions, then accelerates them to more than 50,000 miles per hour to create thrust that propels the spacecraft.
      The element’s central cylinder, which resembles a large barrel, is being attached to the propulsion tanks, and avionics shelves are being installed. The first of three 12-kilowatt thrusters has been delivered to NASA’s Glenn Research Center in Cleveland for acceptance testing before delivery to Maxar and integration with the Power and Propulsion Element later this year.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Linkedin logo @NASA Share
      Details
      Last Updated Apr 25, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station General Humans in Space Explore More
      2 min read NASA Welcomes Gateway Lunar Space Station’s HALO Module to US
      From Italy to Arizona: Gateway’s first habitation module takes a major step on its path…
      Article 3 weeks ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 2 months ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 3 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA/JPL-Caltech A NASA spacesuit glove designed for use during spacewalks on the International Space Station is prepared for thermal vacuum testing inside a one-of-a-kind chamber called CITADEL (Cryogenic Ice Testing, Acquisition Development, and Excavation Laboratory) at NASA’s Jet Propulsion Laboratory in Southern California on Nov. 1, 2023.
      Part of a NASA spacesuit design called the Extravehicular Mobility Unit, the glove was tested at vacuum and minus 352 degrees Fahrenheit (minus 213 degrees Celsius) — temperatures as frigid as those Artemis III astronauts could experience on the Moon’s South Pole. A team from NASA JPL, NASA’s Johnson Space Center in Houston, and the NASA Engineering and Safety Center have collaborated on testing gloves and boots in CITADEL. Elbow joints are slated for testing next. In addition to spotting vulnerabilities with existing NASA suit designs, the experiments will help the agency prepare criteria for test methods for the next-generation lunar suit — being built by Axiom Space — which NASA astronauts will wear during the Artemis III mission.
      Read more about the testing needed for Artemis III.
      Text credit: Melissa Pamer
      Image credit: NASA/JPL-Caltech
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Syncom Space Services employees Kenneth Shipman, left, and Jesse Yarbrough perform final tubing install in early March to prepare the interstage simulator gas system on the Thad Cochran Test Stand at NASA’s Stennis Space Center for leak checks. Leak checks were performed prior to activation of the gas system this month. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin Syncom Space Services employees Branson Cuevas, left, Kenneth Shipman, and Jesse Yarbrough install final tubing in early March before activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Crews at NASA’s Stennis Space Center recently completed activation of interstage gas systems needed for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.
      The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. For Green Run, teams will activate and test all systems to ensure the stage is ready to fly. Green Run will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission.
      The interstage simulator component will function like the SLS interstage section that protects the upper stage during Artemis launches. The interstage simulator will do the same during Green Run testing of the stage at NASA Stennis.
      The interstage simulator gas system will provide helium, nitrogen, and hydrogen to the four RL10 engines for all wet dress and hot fire exercises and tests.
      During the activation process, NASA Stennis crews simulated the engines and flowed gases to mirror various conditions and collect data on pressures and temperatures. NASA Stennis teams conducted 80 different flow cases, calculating such items as flow rates, system pressure drop, and fill/vent times. The calculated parameters then were compared to models and analytics to certify the gas system meets performance requirements.
      NASA engineers Chad Tournillon, left, and Robert Smith verify the functionality of the control system in early March for activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Members of the engineering and operations team review data as it is collected in early March during activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. Pictured are NASA’s Mark Robinson, Robert Simmers, Jack Conley, and Nick Nugent. Activation of the gas systems marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin NASA engineers Pablo Gomez, left, and B.T. Wigley collect data in early March during activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the NASA Stennis stand.NASA/Danny Nowlin Syncom Space Services employees Brandon Fleming, Robert Sheaffer, and Logan Upton review paperwork in early March prior to activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Syncom Space Services engineering tech Brandon Fleming tightens a pressure transducer on the Thad Cochran Test Stand at NASA’s Stennis Space Center in early March. Various transducers were used to provide data during subsequent activation of the interstage simulator gas systems at the stand. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin Crews now will work to activate the umbilical gases and liquid oxygen systems. The NASA Stennis team will then conduct water system activation, where it will flow the flame deflector, aspirator, diffuser cooling circuits, purge rings and water-cooled fairing.
      Afterward, the team will deploy the FireX system to check for total coverage, expected to be completed in the summer. 
      Before the exploration upper stage, built by Boeing at NASA’s Michoud Assembly Facility in New Orleans, arrives at NASA Stennis, crews will perform a final 24-hour check, or stress test, across all test complex facilities to demonstrate readiness for the test series.
      Explore More
      3 min read Lagniappe for April 2025
      Article 3 weeks ago 4 min read Lagniappe for March 2025
      Article 2 months ago 6 min read NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel
      Article 2 months ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A researcher inspects the interior of a male American horseshoe crab at NASA’s Kennedy Space Center in Florida. Known scientifically as Limulus polyphemus, the American horseshoe crab is vital to researchers’ understanding of the overall health of NASA Kennedy’s ecosystem.NASA They’re known as “living fossils”.
      For over 450 million years, horseshoe crabs have been an ecologically vital part of our planet. They’re one of the few surviving species on Earth dating back to the dinosaurs.
      At NASA’s Kennedy Space Center in Florida, the American horseshoe crab (Limulus polyphemus) is one of more than 1,500 types of animals and plants you can find living on its over 144,000 acres, the majority of which is managed by the U.S. Fish and Wildlife Service and National Park Service. Sharing a boundary with the Merritt Island National Wildlife Refuge and Canaveral National Seashore, NASA Kennedy is one of the most biologically diverse places in the United States.
      The center’s land, water, and air species live alongside the symbols of America’s space program: the vital facilities and infrastructure that support the many launches at NASA Kennedy and Cape Canaveral Space Force Station as well as the rockets enabling humanity’s exploration of the cosmos.
      Researchers measure the shell of a male and female American horseshoe crab at NASA’s Kennedy Space Center in Florida. Known scientifically as Limulus polyphemus, the American horseshoe crab is vital to researchers’ understanding of the overall health of NASA Kennedy’s ecosystem. Preserving NASA Kennedy’s wildlife while also fulfilling the agency’s mission requires a balanced approach. The American horseshoe crab exemplifies that balance.
      Horseshoe crabs are keystone species in coastal and estuary systems like the ones surrounding Earth’s premier spaceport. By themselves, these resilient arthropods are a strong indicator of how an ecosystem is doing to support the migratory birds, sea turtles, alligators and other wildlife who rely on it for their survival.
      “The presence and abundance of horseshoe crabs influence the structure and functioning of the entire ecosystem,” said James T. Brooks, an environmental protection specialist at NASA Kennedy. “Their eggs provide a vital food source for many shorebirds in coastal habitats, and their feeding activities help shape the composition of plants and animals that live at the bottom of the ocean or in rivers and lakes. Changes in horseshoe crab populations can signal broader ecological issues, such as pollution or habitat loss.”
      As featured recently on NASA+, biologists survey NASA Kennedy’s beaches regularly for horseshoe crabs, counting each one they spot and tagging them with devices that lets researchers study their migration patterns and survival rates. The devices also track the crabs’ spawning activity, habitat health, and population trends, especially during peak breeding seasons in spring and summer.
      All this data helps in assessing the overall health of NASA Kennedy’s ecosystem, but horseshoe crabs also play a vital role in humanity’s health. Their blue, copper-based blood contains a substance called Limulus Amebocyte Lysate, critical for detecting bacterial contamination in medical equipment, pharmaceuticals, and vaccines.
      Their unique value in ensuring biomedical safety underscores why NASA Kennedy emphasizes ecological monitoring in addition to its roles in the global space economy, national defense, and space exploration.
      A male and female American horseshoe crab meet during mating season at NASA’s Kennedy Space Center in Florida. Known scientifically as Limulus polyphemus, the American horseshoe crab is vital to researchers’ understanding of the overall health of NASA Kennedy’s ecosystem. NASA At NASA Kennedy, horseshoe crabs are protected and monitored through habitat restoration projects like rebuilding shorelines eroded by storms and minimizing human impact on nesting sites. These initiatives ensure that the spaceport’s operations coexist harmoniously with nature and deepen our understanding of Earth’s interconnected ecosystems.
      On this Earth Day, NASA Kennedy celebrates the important role these ancient mariners play as we launch humanity’s future.

      About the Author
      Messod C. Bendayan

      Share
      Details
      Last Updated Apr 22, 2025 Related Terms
      Kennedy Space Center Sustainability at Kennedy Space Center Explore More
      2 min read NASA Invites Virtual Guests to Launch of SpaceX 32nd Resupply Mission
      Article 6 days ago 2 min read NASA Invites You to Share Excitement of Agency’s SpaceX Crew-10 Launch
      Article 2 months ago 4 min read Five Facts About NASA’s Moon Bound Technology
      Article 2 months ago Keep Exploring Discover More Topics From NASA
      Earth Day Toolkit
      NASA’s fleet of satellites see the whole Earth, every day. This year, you can celebrate Earth Day with NASA wherever…
      Geostationary Operational Environmental Satellites (GOES)
      This placeholder has been created to be used in the Topic Cards block. PLEASE DO NOT DELETE IT. This post’s…
      Extreme Weather
      As Earth’s climate changes, it is impacting extreme weather across the planet. Record-breaking heat waves on land and in the…
      Why Have a Telescope in Space?
      Hubble was designed as a general purpose observatory, meant to explore the universe in visible, ultraviolet, and infrared wavelengths. To…
      View the full article
  • Check out these Videos

×
×
  • Create New...