Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Students from Tropico Middle School in Rosamond, California, build their own paper planes as part of a project during NASA Aero Fair on April 9, 2025.NASA/Genaro Vavuris A new generation of aerospace explorers will soon embark on a hands-on summer experience focusing on careers in science, mathematics, engineering, and technology (STEM). This month, NASA’s Armstrong Flight Research Center in Edwards, California, and the Flight Test Museum Foundation will launch the 2025 Junior Test Pilot School.
      Held at Blackbird Airpark and Joe Davies Heritage Airpark in Palmdale, California, this six-week program invites elementary-aged students to step into the shoes of test pilots and engineers from 9 a.m. to 2 p.m. Mondays through Fridays, June 16 through July 25. Registration is free through participating school districts and the Flight Test Museum. Students will have direct access to legendary aircraft such as A-12, SR-71, U-2, F-86 Sabre, and NASA Boeing 747 Space Shuttle Carrier Aircraft.
      The Junior Test Pilot School combines authentic NASA-designed curriculum, immersive aerospace activities, and direct engagement with engineers, test pilots, and scientists to inspire future aerospace professionals in the Antelope Valley – home to one of the nation’s highest concentrations of STEM careers.
      “This program offers more than a glimpse into aerospace, it provides students a hands-on opportunity to solve real-world problems and see themselves in future STEM roles,” said Dr. Amira Flores, program integration manager for NASA’s California Office of STEM Engagement.
      Daily lessons cover eight core modules: flight principles, stealth engineering, altitude effects, speed and g-force, payload impact, maneuverability, reconnaissance design, and jet engine systems.
      Additionally, in collaboration with NASA Armstrong’s Aero Fair program, students will be guided through the program’s Wildfire Design Challenge by a NASA volunteer. Following the engineering design process, students will collaborate to design and build a prototype of an aerial vehicle that suppresses wildfires.
      “Our junior test pilots learn to analyze the aircraft to figure out why they were designed the way they are and think like an engineer,” said Lisa Sheldon Brown, director of education at the Flight Test Museum. “Research shows that academic trajectory is set by fifth grade, making this the critical window to inspire STEM interest and career awareness.”
      The program is delivered in partnership with the City of Palmdale and is supported by industry sponsors, including Lockheed Martin and Northrop Grumman. These partners not only provide funding and volunteers but also elevate career exposure by introducing students to diverse aerospace professionals within the region. 
      NASA Armstrong is a hub of aeronautical innovation and STEM workforce development in the Antelope Valley. Through programs like Aero Fair and partnerships like Junior Test Pilots School, Armstrong inspires and equips the next generation of engineers, pilots, and scientists. 
      The Flight Test Museum Foundation preserves the legacy and promotes the future of aerospace through education programs and historical preservation at the Blackbird Airpark and forthcoming Flight Test Museum at Edwards Air Force Base in Edwards, California.
      For more about NASA’s Armstrong Flight Research Center, visit:
      https://www.nasa.gov/armstrong
      – end –
      Elena Aguirre
      Armstrong Flight Research Center, Edwards, California
      (661) 276-7004
      elena.aguirre@nasa.gov
      Dede Dinius
      Armstrong Flight Research Center, Edwards, California
      (661) 276-5701
      darin.l.dinius@nasa.gov
      Explore More
      5 min read NASA F-15s Validate Tools for Quesst Mission
      Article 2 days ago 4 min read NASA Student Challenge Prepares Future Designers for Lunar Missions
      Article 2 days ago 2 min read From Garment Industry to NASA: Meet Systems Engineer Daniel Eng
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System

      View the full article
    • By NASA
      Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 8 min read
      ICESat-2 Applications Team Hosts Satellite Bathymetry Workshop
      Introduction
      On September 15, 2018, the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission launched from Vandenberg Air Force Base and began its journey to provide spatially dense and fine precision global measurements of our Earth’s surface elevation. Now in Phase E of NASA’s project life cycle (where the mission is carried out, data is collected and analyzed, and the spacecraft is maintained) of the mission and with almost six years of data collection, the focus shifts to looking ahead to new applications and synergies that may be developed using data from ICESat-2’s one instrument: the Advanced Topographic Laster Altimetry System (ATLAS) – see Figure 1.
      Figure 1. The ATLAS instrument onboard the ICESat-2 platform obtains data using a green, photon-counting lidar that is split into six beams. Figure credit: ICESat-2 Mission Team Satellite-derived bathymetry (SDB) is the process of mapping the seafloor using satellite imagery. The system uses light penetration and reflection in the water to make measurements and estimate variations in ocean floor depths. SDB provides several advantages over other techniques used to map the seafloor (e.g., cost-effectiveness, global coverage, and faster data acquisition). On the other hand, SDB can be limited by water clarity, spatial resolution of the remote sensing measurement, and accuracy, depending on the method and satellite platform/instrument. These limitations notwithstanding, SDB can be used in a wide variety of applications, e.g., coastal zone management, navigation and safety, marine habitat monitoring, and disaster response. ICESat-2 has become a major contributor to SDB, with over 2000 journal article references to this topic to date. Now is the time to think about the state-of-the-art and additional capabilities of SDB for the future.
      To help stimulate such thinking, the NASA ICESat-2 applications team hosted a one-day workshop on March 17, 2025. The workshop focused on the principles and methods for SDB. Held in conjunction with the annual US-Hydro meeting on March 17–20, 2025 at the Wilmington Convention Center in Wilmington, NC, the meeting was hosted by the Hydrographic Society of America. During the workshop the applications team brought together SDB end-users, algorithm developers, operators, and decision makers to discuss the current state and future needs of satellite bathymetry for the community. The objective of this workshop was to provide a space to foster collaboration and conceptualization of SDB applications not yet exploited and to allow for networking to foster synergies and collaborations between different sectors.
      Meeting Overview
      The workshop provided an opportunity for members from government, academia, and private sectors to share their SDB research, applications, and data fusion activities to support decision making and policy support across a wide range of activities. Presenters highlighted SDB principles, methods, and tools for SDB, an introduction of the new ICESat-2 bathymetric data product (ATL24), which is now available through the National Snow and Ice Data Center (NSIDC). During the workshop, the ICESat-2 team delivered a live demonstration of a web service for science data processing. Toward the end of the day, the applications team opened an opportunity for attendees to gather and discuss various topics related to SDB. This portion of the meeting was also available to online participation via Webex Webinars, which broadened the discussion.
      Meeting Goal
      The workshop offered a set of plenary presentations and discussions. During the plenary talks, participants provided an overview of Earth observation and SDB principles, existing methods and tools, an introduction to the newest ICESat-2 bathymetry product ATL24, a demonstration of the use of the webservice SlideRule Earth, and opportunities for open discission, asking questions and developing collaborations.
      Meeting and Summary Format
      The agenda of the SDB workshop was intended to bring together SDB end-users, including ICESat-2 application developers, satellite operators, and decision makers from both government and non-governmental entities to discuss the current state and future needs of the community. The workshop consisted of six sessions that covered various topics of SDB. This report is organized according to the topical focus of the plenary presentations with a brief narrative summary of each presentation included. The discussions that followed were not recorded and are not included in the report. The last section of this report consists of conclusions and future steps. The online meeting agenda includes links to slide decks for many of the presentations.
      Welcoming Remarks
      Aimee Neeley [NASA’s Goddard Space Flight Center (GSFC)/Science Systems and Applications Inc. (SSAI)—ICESat-2 Mission Applications Lead] organized the workshop and served as the host for the event. She opened the day with a brief overview of workshop goals, logistics, and the agenda.
      Overview of Principles of SDB
      Ross Smith [TCarta—Senior Geospatial Scientist] provided an overview of the principles of space-based bathymetry, including the concepts, capabilities, limitations, and methods. Smith began by relaying the history of satellite-derived bathymetry, which began with a collaboration between NASA and Jacques Cousteau in 1975, in which Cousteau used Landsat 1 data, as well as in situ data, to calculate bathymetry to a depth of 22 m (72 ft) in the Bahamas. Smith then described the five broad methodologies and their basic concepts for deriving bathymetry from remote sensing: radar altimetry, bottom reflectance, wave kinematics, laser altimetry, and space-based photogrammetry – see Figure 2. He then introduced the broad methodologies, most commonly used satellite sensors, the capabilities and limitations of each sensor, and the role of ICESat-2 in satellite bathymetry.
      Figure 2. Satellite platforms commonly used for SDB. Figure credit: Ross Smith Review of SDB Methods and Tools
      In this grouping of plenary presentations, representatives from different organizations presented their methods and tools for creating satellite bathymetry products.
      Gretchen Imahori [National Oceanic and Atmospheric Administration’s (NOAA) National Geodetic Survey, Remote Sensing Division] presented the NOAA SatBathy (beta v2.2.3) Tool Update. During this presentation, Imahori provided an overview of the NOAA SatBathy desktop tool, example imagery, updates to the latest version, and the implementation plan for ATL24. The next session included more details about ATL24.
      Minsu Kim [United States Geological Survey (USGS), Earth Resource and Observation Center (EROS)/ Kellogg, Brown & Root (KBR)—Chief Scientist] presented the talk Satellite Derived Bathymetry (SDB) Using OLI/MSI Based-On Physics-Based Algorithm. He provided an overview of an SDB method based on atmospheric and oceanic optical properties. Kim also shared examples of imagery from the SDB product – see Figure 3.
      Figure 3. Three-dimensional renderings of the ocean south of Key West, FL created by adding SDB Digital Elevation Model (physics-based) to a Landsat Operational Land Imager (OLI) scene [top] and a Sentinel-2 Multispectral Imager (MSI) scene [bottom]. Figure credit: Minsu Kim Edward Albada [Earth Observation and Environmental Services GmbH (EOMAP)—Principal] presented the talk Satellite Lidar Bathymetry and EoappTM SLB-Online. The company EOMAP provides various services, including SDB, habitat mapping. For context, Albada provided an overview of EoappTM SDB-Online, a cloud-based software for creating SDB. (EoappTM SDB-online is one of several Eoapp apps and is based on the ICESat-2 photon data product (ATL03). Albada also provided example use cases from Eoapp – see Figure 4.
      Figure 4.A display of the Marquesas Keys (part of the Florida Keys) using satellite lidar bathymetry data from the Eoapp SLB-Online tool from EOMAP. Figure credit: Edward Albada Monica Palaseanu-Lovejoy [USGS GMEG—Research Geographer] presented on a Satellite Triangulated Sea Depth (SaTSeaD): Bathymetry Module for NASA Ames Stereo Pipeline (ASP). She provided an overview of the shallow water bathymetry SaTSeaD module, a photogrammetric method for mapping bathymetry. Palaseanu-Lovejoy presented error statistics and validation procedures. She also shared case study results from Key West, FL; Cocos Lagoon, Guam; and Cabo Rojo, Puerto Rico – see Figure 5.
      Figure 5. Photogrammetric bathymetry map of Cabo Roja, Puerto Rico displayed using the SatSeaD Satellite Triangulated Sea Depth (SaTSeaD): Bathymetry Module for NASA Ames Stereo Pipeline (ASP) module. Figure credit: Monica Palaseanu-Lovejoy Ross Smith presented a presentation on TCarta’s Trident Tools: Approachable SDB|Familiar Environment. During this presentation, Smith provided an overview of the Trident Tools Geoprocessing Toolbox deployed in Esri’s ArcPro. Smith described several use cases for the toolbox in Abu Dhabi, United Arab Emirates; Lucayan Archipelago, Bahamas; and the Red Sea.
      Michael Jasinski [GSFC—Research Hydrologist] presented on The ICESat-2 Inland Water Along Track Algorithm (ATL13). He provided an overview of the ICESat-2 data product ATL13 an inland water product that is distributed by NSIDC. Jasinski described the functionality of the ATL13 semi-empirical algorithm and proceeded to provide examples of its applications with lakes and shallow coastal waters – see Figure 6.
      Figure 6. A graphic of the network of lakes and rivers in North America that are measured by ICESat-2. Figure credit: Michael Jasinski ATL24 Data Product Update
      Christopher Parrish [Oregon State University, School of Civil and Construction Engineering—Professor] presented on ATL24: A New Global ICESat-2 Bathymetric Data Product. Parrish provided an overview of the recently released ATL24 product and described the ATL24 workflow, uncertainty analysis, and applications in shallow coastal waters. Parrish included a case study where ATL24 data were used for bathymetric mapping of Kiriwina Island, Papua New Guinea – see Figure 7.
      Figure 7. ATL24 data observed for Kiriwina Island, Papua New Guinea. Figure credit: Christopher Parrish SlideRule Demo
      J. P. Swinski [GSFC—Computer Engineer] presented SlideRule Earth: Enabling Rapid, Scalable, Open Science. Swinski explained that SlideRule Earth is a public web service that provides access to on-demand processing and visualization of ICESat-2 data. SlideRule can be used to process a subset of ICESat-2 data products, including ATL24 – see Figure 8.
      Figure 8. ATL24 data observed for Sanibel, FL as viewed on the SlideRule Earth public web client. Figure credit: SlideRule Earth SDB Accuracy
      Kim Lowell [University of New Hampshire—Data Analytics Research Scientist and Affiliate Professor] presented on SDB Accuracy Assessment and Improvement Talking Points. During this presentation, Lowell provided examples of accuracy assessments and uncertainty through the comparison of ground measurement of coastal bathymetry to those modeled from satellite data.
      Conclusion
      The ICESat-2 Satellite Bathymetry workshop fostered discussion and collaboration around the topic of SDB methods. The plenary speakers presented the state-of-the-art methods used by different sectors and organizations, including government and private entities. With the release of ATL24, ICESat-2’s new bathymetry product, it was prudent to have a conversation about new and upcoming capabilities for all methods and measurements of satellite bathymetry. Both in-person and online participants were provided with the opportunity to learn, ask questions, and discuss potential applications in their own research. The ICESat-2 applications team hopes to host more events to ensure the growth of this field to maximize the capabilities of ICESat-2 and other Earth Observing systems.
      Share








      Details
      Last Updated Jun 05, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site
      NASA’s Mars rover Curiosity acquired this image of a portion of its workspace, full of interesting but not drillable bedrock, using its Left Navigation Camera on June 2, 2025 — Sol 4558, or Martian day 4,558 of the Mars Science Laboratory mission — at 12:23:24 UTC. NASA/JPL-Caltech Written by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center
      Earth planning date: Monday, June 2, 2025
      Now that Curiosity has spent a few sols collecting close-up measurements of the rocks in the outer edge of the boxwork-forming geologic unit, the team has decided that it’s time to collect a drill sample. The geochemical measurements by APXS and ChemCam have shown changes since we crossed over from the previous layered sulfate unit, but we can’t figure out the mineralogy from those data alone. As we’ve often seen before on Mars, the same chemical elements can crystallize into a number of different mineral assemblages. That’s even more the case in sedimentary rocks such as we are driving through, in which different grains in our rocks may have formed in different times and places. This also means that when we do get our mineral data, those minerals will tell us a lot about the history of these new-to-us rocks.
      On board Curiosity, that mineral analysis is the job of the CheMin instrument, which uses X-ray diffraction to identify minerals. CheMin shines a narrow X-ray beam through a powdered sample in order to generate the diffraction pattern, which means that it needs a drilled sample. So the team today was busy looking for a drillable spot. Unfortunately the rover’s drill reach from today’s parking spot included only rocks that were too fractured or had too much debris sitting on them to be considered likely to produce a good drilled sample, so we will have to move, or “bump,” at least one more time before progressing to the drill preload test, which is the next step in drilling. 
      In the meantime, we are taking more measurements to understand the range of compositions that can be found in this rock layer. Dust removal (DRT) + APXS + LIBS + MAHLI were all planned for target “Holcomb Valley,” while a short distance away a second DRT/APXS/MAHLI measurement was planned for “Santa Ysabel Valley” and in another direction, a second LIBS for “Stough Saddle.” One long-distance ChemCam remote imaging mosaic was planned to cover a boxwork structure off in the distance. Mastcam had a relatively light day of imaging, with just a couple of small mosaics covering a nearby trough feature, and providing context for the RMI of the boxwork structure, in addition to documenting the two LIBS targets. The modern Mars environment was also recorded with a couple of movies to look for dust-devil activity, a measurement of atmospheric opacity, and a pair of suprahorizon observations to look for clouds, plus the usual passive observations by DAN and REMS to monitor the neutron environment, temperature, and humidity.
      I’ll be on rover planning Wednesday as Geology and Mineralogy Science Theme Lead and looking forward to what we find — hopefully some drillable boxwork-unit bedrock!
      Share








      Details
      Last Updated Jun 04, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4556-4558: It’s All in a Day’s (box)Work


      Article


      1 day ago
      2 min read Sols 4554–4555: Let’s Try That One Again…


      Article


      6 days ago
      2 min read Sol 4553: Back to the Boxwork!


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      The SpaceX Dragon spacecraft carrying the Axiom Mission 3 crew is pictured approaching the International Space Station on Jan. 20, 2024.Credit: NASA NASA, Axiom Space, and SpaceX are targeting 8:22 a.m. EDT, Tuesday, June 10, for launch of the fourth private astronaut mission to the International Space Station, Axiom Mission 4.
      The mission will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The crew will travel to the orbiting laboratory on a new SpaceX Dragon spacecraft after launching on the company’s Falcon 9 rocket. The targeted docking time is approximately 12:30 p.m., Wednesday, June 11.
      NASA will stream live coverage of launch and arrival activities on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.

      NASA’s mission responsibility is for integrated operations, which begins during the spacecraft’s approach to the space station, continues during the crew’s approximately two-week stay aboard the orbiting laboratory while conducting science, education, and commercial activities, and concludes once the spacecraft exits the station.

      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.
      As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carries the first astronauts from Poland and Hungary to stay aboard the space station.
      NASA will join the mission prelaunch teleconference hosted by Axiom Space (no earlier than one hour after completion of the Launch Readiness Review) at 6 p.m., Monday, June 9, with the following participants:
      Dana Weigel, manager, International Space Station Program, NASA Allen Flynt, chief of mission services, Axiom Space William Gerstenmaier, vice president, Build and Flight Reliability, SpaceX Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force To join the teleconference, media must register with Axiom Space by 12 p.m., Sunday, June 8, at:
      https://bit.ly/4krAQHK
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):


      Tuesday, June 10
      6:15 a.m. – Axiom Space and SpaceX launch coverage begins.
      7:25 a.m. – NASA joins the launch coverage on NASA+.

      8:22 a.m. – Launch

      NASA will end coverage following orbital insertion, which is approximately 15 minutes after launch. As it is a commercial launch, NASA will not provide a clean launch feed on its channels.


      Wednesday, June 11
      10:30 a.m. – Arrival coverage begins on NASA+, Axiom Space, and SpaceX channels.


      12:30 p.m. – Targeted docking to the space-facing port of the station’s Harmony module.
      Arrival coverage will continue through hatch opening and welcome remarks.

      All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.
      The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jun 04, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Private Astronaut Missions Commercial Space Humans in Space International Space Station (ISS) ISS Research Johnson Space Center Kennedy Space Center View the full article
    • By NASA
      Two NASA-developed technologies are key components of a new high-resolution sensor for observing wildfires: High Operating Temperature Barrier Infrared Detector (HOT-BIRD), developed with support from NASA’s Earth Science Technology Office (ESTO), and a cutting-edge Digital Readout Integrated Circuit (DROIC), developed with funding from NASA’s Small Business Innovation Research (SBIR) program.
      NASA’s c-FIRST instrument could provide high resolution data from a compact space-based platform in under an hour, making it easier for wildfire managers to detect and monitor active burns. Credit: NASA/JPL A novel space-based sensor for observing wildfires could allow first responders to monitor burns at a global scale, paving the way for future small satellite (SmallSat) constellations dedicated entirely to fire management and prevention.
      Developed with support from NASA’s Earth Science Technology Office (ESTO), the “Compact Fire Infrared Radiance Spectral Tracker” (c-FIRST) is a small, mid-wave infrared sensor that collects thermal radiation data across five spectral bands. Most traditional space-based sensors dedicated to observing fires have long revisit times, observing a scene just once over days or even weeks. The compact c-FIRST sensor could be employed in a SmallSat constellation that could observe a scene multiple times a day, providing first responders data with high spatial resolution in under an hour.
      In addition, c-FIRST’s dynamic spectral range covers the entire temperature profile of terrestrial wild fires, making it easier for first-responders to detect everything from smoldering, low-intensity fires to flaming, high intensity fires.
      “Wildfires are becoming more frequent, and not only in California. It’s a worldwide problem, and it generates tons of by-products that create very unhealthy conditions for humans,” said Sarath Gunapala, who is an Engineering Fellow at NASA’s Jet Propulsion Laboratory (JPL) and serves as Principal Investigator for c-FIRST.
      The need for space-based assets dedicated to wildfire management is severe. During the Palisade and Eaton Fires earlier this year, strong winds kept critical observation aircraft from taking to the skies, making it difficult for firefighters to monitor and track massive burns.
      Space-based sensors with high revisit rates and high spatial resolution would give firefighters and first responders a constant source of eye-in-the-sky data.
      “Ground-based assets don’t have far-away vision. They can only see a local area. And airborne assets, they can’t fly all the time. A small constellation of CubeSats could give you that constant coverage,” said Gunapala.
      c-FIRST leverages decades of sensor development at JPL to achieve its compact size and high performance. In particular, the quarter-sized High Operating Temperature Barrier Infrared Detector (HOT-BIRD), a compact infrared detector also developed at JPL with ESTO support, keeps c-FIRST small, eliminating the need for bulky cryocooler subsystems that add mass to traditional infrared sensors.
      With HOT-BIRD alone, c-FIRST could gather high-resolution images and quantitative retrievals of targets between 300°K (about 80°F) to 1000°K (about 1300°F). But when paired with a state-of-the-art Digital Readout Integrated Circuit (DROIC), c-FIRST can observe targets greater than 1600°K (about 2400°F).
      Developed by Copious Imaging LLC. and JPL with funding from NASA’s Small Business Innovation Research (SBIR) program, this DROIC features an in-pixel digital counter to reduce saturation, allowing c-FIRST to capture reliable infrared data across a broader spectral range.
      Artifical intelligence (AI) will also play a role in c-FIRST’s success. Gunapala plans to leverage AI in an onboard smart controller that parses collected data for evidence of hot spots or active burns. This data will be prioritized for downlinking, keeping first responders one step ahead of potential wildfires.
      “We wanted it to be simple, small, low cost, low power, low weight, and low volume, so that it’s ideal for a small satellite constellation,” said Gunapala.
      Gunapala and his team had a unique opportunity to test c-FIRST after the Palisade and Eaton Fires in California. Flying their instrument aboard NASA’s B-200 Super King Air, the scientists identified lingering hot spots in the Palisades and Eaton Canyon area five days after the initial burn had been contained.
      Now, the team is eyeing a path to low Earth orbit. Gunapala explained that their current prototype employs a standard desktop computer that isn’t suited for the rigors of space, and they’re working to incorporate a radiation-tolerant computer into their instrument design.
      But this successful test over Los Angeles demonstrates c-FIRST is fit for fire detection and science applications. As wildfires become increasingly common and more destructive, Gunapala hopes that this tool will help first responders combat nascent wildfires before they become catastrophes.
      “To fight these things, you need to detect them when they’re very small,” said Gunapala.
      A publication about c-FIRST appeared in the journal “Society of Photo-Optical Instrumentation Engineers” (SPIE) in March, 2023.
      For additional details, see the entry for this project on NASA TechPort.
      To learn more about emerging technologies for Earth science, visit ESTO’s open solicitations page.
      Project Lead:  Sarath Gunapala, NASA Jet Propulsion Laboratory (JPL)
      Sponsoring Organization: NASA ESTO
      Share








      Details
      Last Updated Jun 03, 2025 Related Terms
      Technology Highlights Earth Science Division Earth Science Technology Office Science-enabling Technology Explore More
      4 min read Unearthly Plumbing Required for Plant Watering in Space


      Article


      2 weeks ago
      6 min read Quantum Sensing via Matter-Wave Interferometry Aboard the International Space Station


      Article


      4 weeks ago
      4 min read Entrepreneurs Challenge Winner PRISM is Using AI to Enable Insights from Geospatial Data


      Article


      1 month ago
      View the full article
  • Check out these Videos

×
×
  • Create New...