Members Can Post Anonymously On This Site
James Gentile: Shaping the Artemis Generation, One Simulation at a Time
-
Similar Topics
-
By NASA
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson NASA and the Department of Defense (DoD) teamed up June 11 and 12 to simulate emergency procedures they would use to rescue the Artemis II crew in the event of a launch emergency. The simulations, which took place off the coast of Florida and were supported by launch and flight control teams, are preparing NASA to send four astronauts around the Moon and back next year as part of the agency’s first crewed Artemis mission.
The team rehearsed procedures they would use to rescue the crew during an abort of NASA’s Orion spacecraft while the SLS (Space Launch System) rocket is still on the launch pad, as well as during ascent to space. A set of test mannequins and a representative version of Orion called the Crew Module Test Article, were used during the tests.
The launch team at NASA’s Kennedy Space Center in Florida, flight controllers in mission control at the agency’s Johnson Space Center in Houston, as well as the mission management team, all worked together, exercising their integrated procedures for these emergency scenarios.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025.NASA/Isaac Watson “Part of preparing to send humans to the Moon is ensuring our teams are ready for any scenario on launch day,” said Lakiesha Hawkins, NASA’s assistant deputy associate administrator for the Moon to Mars Program, and who also is chair of the mission management team for Artemis II. “We’re getting closer to our bold mission to send four astronauts around the Moon, and our integrated testing helps ensure we’re ready to bring them home in any scenario.”
The launch pad abort scenario was up first. The teams conducted a normal launch countdown before declaring an abort before the rocket was scheduled to launch. During a real pad emergency, Orion’s launch abort system would propel Orion and its crew a safe distance away and orient it for splashdown before the capsule’s parachutes would then deploy ahead of a safe splashdown off the coast of Florida.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson For the simulated splashdown, the test Orion with mannequins aboard was placed in the water five miles east of Kennedy. Once the launch team made the simulated pad abort call, two Navy helicopters carrying U.S. Air Force pararescuers departed nearby Patrick Space Force Base. The rescuers jumped into the water with unique DoD and NASA rescue equipment to safely approach the spacecraft, retrieve the mannequin crew, and transport them for medical care in the helicopters, just as they would do in the event of an actual pad abort during the Artemis II mission.
The next day focused on an abort scenario during ascent to space.
The Artemis recovery team set up another simulation at sea 12 miles east of Kennedy, using the Orion crew module test article and mannequins. With launch and flight control teams supporting, as was the Artemis II crew inside a simulator at Johnson, the rescue team sprung into action after receiving the simulated ascent abort call and began rescue procedures using a C-17 aircraft and U.S. Air Force pararescuers. Upon reaching the capsule, the rescuers jumped from the C-17 with DoD and NASA unique rescue gear. In an actual ascent abort, Orion would separate from the rocket in milliseconds to safely get away prior to deploying parachutes and splashing down.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for an ascent abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Thursday, June 12, 2025. NASA/Isaac Watson Rescue procedures are similar to those used in the Underway Recovery Test conducted off the California coast in March. This demonstration ended with opening the hatch and extracting the mannequins from the capsule, so teams stopped without completing the helicopter transportation that would be used during a real rescue.
Exercising procedures for extreme scenarios is part of NASA’s work to execute its mission and keep the crew safe. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
View the full article
-
By NASA
What does it take to gaze through time to our universe’s very first stars and galaxies?
NASA answers this question in its new documentary, “Cosmic Dawn: The Untold Story of the James Webb Space Telescope.” The agency’s original documentary, which chronicles the story of the most powerful telescope ever deployed in space, was released Wednesday, June 11.
Cosmic Dawn offers an unprecedented glimpse into the delicate assembly, rigorous testing, and triumphant launch of NASA’s James Webb Space Telescope. The documentary showcases the complexity involved in creating a telescope capable of peering billions of years into the past.
Cosmic Dawn is now available for streaming on NASA’s YouTube, NASA+, and select local theaters. The trailer is available on NASA+ and YouTube.
Relive the pitfalls and the triumphs of the world’s most powerful space telescope—from developing the idea of an impossible machine to watching with bated breath as it unfolded, hurtling through space a million miles away from Earth. Watch the Documentary on YouTube The film features never-before-seen footage captured by the Webb film crew, offering intimate access to the challenges and triumphs faced by the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland — the birthplace of Webb.
“At NASA, we’re thrilled to share the untold story of our James Webb Space Telescope in our new film ‘Cosmic Dawn,’ celebrating not just the discoveries, but the extraordinary people who made it all happen, for the benefit of humanity,” said Rebecca Sirmons, head of NASA+ at the agency’s headquarters in Washington.
From its vantage point more than a million miles from Earth and a massive sunshield to block the light of our star, Webb’s First Deep Field the deepest and sharpest infrared images of the universe that the world had seen.
Webb’s images have dazzled people around the globe, capturing the very faint light of the first stars and galaxies that formed more than 13.5 billion years ago. These are baby pictures from an ancient past when the first objects were turning on and emitting light after the Big Bang. Webb has also given us new insights into black holes, planets both inside and outside of our own solar system, and many other cosmic phenomena.
Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful. It was always going to make history
Sophia roberts
NASA Video Producer
NASA’s biggest and most powerful space telescope was also its most technically complicated to build. It was harder still to deploy, with more than 300 critical components that had to deploy perfectly. The risks were high in this complicated dance of engineering, but the rewards were so much higher.
“Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful,” said video producer Sophia Roberts, who chronicled the five years preceding Webb’s launch. “It was always going to make history.”
NASA scientists like Nobel Laureate Dr. John Mather conceived Webb to look farther and deeper into origins of our universe using cutting edge infrared technology and massive mirrors to collect incredibly rich information about our universe, from the light of the first galaxies to detailed images of planets in our own solar system.
To achieve this goal, NASA and its partners faced unprecedented hurdles.
Webb’s development introduced questions that no one had asked before. How do you fit a telescope with the footprint of a tennis court into a rocket? How do you clean 18 sensitive mirrors when a single scratch could render them inoperable? How do you maintain critical testing while hurricane stormwater pours through ceilings?
A technician inspects the James Webb Space Telescope primary mirrors at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.NASA/Sophia Roberts Cosmic Dawn captures 25 years of formidable design constraints, high-stake assessments, devastating natural disasters, a global pandemic and determined individuals who would let none of that get in the way of getting this monumental observatory to its rightful place in the cosmos.
“There was nothing easy about Webb at all,” said Webb project manager Bill Ochs. “I don’t care what aspect of the mission you looked at.”
Viewers will experience a one-of-a-kind journey as NASA and its partners tackle these dilemmas — and more — through ingenuity, teamwork, and unbreakable determination.
“The inspiration of trying to discover something — to build something that’s never been built before, to discover something that’s never been known before — it keeps us going,” Mather said. “We are pleased and privileged in our position here at NASA to be able to carry out this [purpose] on behalf of the country and the world.”
Bound by NASA’s 66-year commitment to document and share its work with the public, Cosmic Dawn details every step toward Webb’s launch and science results.
Learn more at nasa.gov/cosmicdawn By Laine Havens,
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Katie Konans,
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jun 11, 2025 Related Terms
James Webb Space Telescope (JWST) Goddard Space Flight Center NASA+ View the full article
-
By NASA
3 Min Read I Am Artemis: Ernesto Garcia
Ernesto Garcia, engineering manager at Rayotech Scientific, Inc., holds a test article of one of the windowpanes for the Orion spacecraft. Credits: NASA/Rad Sinyak Listen to this audio excerpt from Ernesto Garcia, Rayotech Scientific engineering manager:
0:00 / 0:00
Your browser does not support the audio element.
My name is Ernesto Garcia, and I am an engineering manager at Rayotech Scientific in San Diego, in charge of fabricating the windowpanes for the Orion spacecraft.
Fabricating Orion’s windowpanes entails a very strict manufacturing process. It involves first starting from a giant sheet of glass that we cut down to near net shape. Once we get down to that near net shape, we perform a grinding operation. We grind the window edges and grind the faces.
The windows are visible on the Orion spacecraft crew module for Artemis I, shown here on May 2, 2019, undergoing direct field acoustic testing at NASA’s Kennedy Space Center in Florida.NASA/Rad Sinyak Once we do all that grinding, we perform a specialized process where we actually strengthen the edges of the window. Since most of the window’s strength comes from the edges, we want to make sure that those are perfect and pristine, and so we minimize any subsurface damage that is around that. Then we send it off to get polished and coated.
After that, we perform pressure testing in our lab, which is really the most important thing that is required for this window to prove that it can survive in space. We apply the required stresses to make sure that the windows can survive on the Orion spacecraft.
The opportunity to be part of this program has been something that I’m really proud of.
When I was a child, I always wanted to work for NASA — and now, I work directly with NASA engineers, work with the windows first-hand, and work to develop processes.
Ernesto Garcia
Engineering Manager, Rayotech Scientific
Coming up with ideas of how to manufacture [the windows] and then coming up with the pressure testing equipment to verify that they are going to survive in space was extremely fulfilling.
Being able to participate in Artemis I and seeing those windows on that [Orion spacecraft] — seeing it go into space — was probably one of the most rewarding things I’ve ever experienced besides having my kids. My children are immensely proud of what I’m doing. Seeing my kids’ reactions when I’m letting them know that I’m working directly with people that are putting things in space, with people that are making changes in the world — it’s something that inspires them.
NASA astronauts and Artemis II crew members Reid Wiseman and Victor Glover look through a window of Orion spacecraft mockup during Post Insertion and Deorbit Preparation training at the Space Vehicle Mockup Facility in Houston, Texas. The crew practiced getting the Orion spacecraft configured once in orbit, how to make it habitable, and suited up in their entry pressure suits to prepare for their return from the Moon.Mark Sowa – NASA – JSC I imagine it will be a very special experience for the Artemis II astronauts to look out of these windows on their mission around the Moon. For them to be able to just look out and see what’s around them…to explore what else is out there from their eyes, not a camera’s point of view. It’s going to be pretty extraordinary that they’ll be able to see from their eyes — through our windows — something that not everybody else gets to see.
About the Author
Erika Peters
Share
Details
Last Updated Jun 10, 2025 Related Terms
Orion Program I Am Artemis Orion Multi-Purpose Crew Vehicle Explore More
4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts
Article 8 hours ago 3 min read I Am Artemis: Lili Villarreal
Lili Villarreal fell in love with space exploration from an early age when her and…
Article 6 days ago 4 min read Integrated Testing on Horizon for Artemis II Launch Preparations
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 Min Read I Am Artemis: Lili Villarreal
Listen to this audio excerpt from Liliana Villarreal, Artemis Landing & Recovery Director:
0:00 / 0:00
Your browser does not support the audio element. Lili Villarreal fell in love with space exploration from an early age when she and her family visited the Kennedy Space Center Visitor Complex in Florida. So, it should come as no surprise that when the opportunity came for her to start working on NASA’s Artemis missions to explore the Moon and build the foundation for the first crewed mission to Mars, she jumped at it.
I was like, ‘Wow, we're going back to the Moon. I mean, how cool would it be to be at the beginning stages of that?'
Liliana Villareal
Artemis Landing & Recovery Director
She currently serves as the Artemis Landing and Recovery Director, helping retrieve the astronauts and Orion spacecraft after they splash down in the Pacific Ocean following their mission in space.
Originally from Cartagena, Colombia, Villarreal moved to Miami, Florida, when she was 10 years old with the goal of one day entering the aerospace industry. In 2007, her dream came true, and she became a part of the NASA team.
Prior to becoming the landing and recovery director, Villarreal served as the deputy flow director for the Artemis I mission, responsible for the integration, stacking, and testing of the SLS (Space Launch System) rocket and Orion spacecraft inside the Vehicle Assembly Building at the agency’s Kennedy Space Center.
Cliff Lanham, fourth from left, ground operations manager with Exploration Ground Systems (EGS), passes the baton to Charlie Blackwell-Thompson, Artemis I launch director, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on March 16, 2022. Joining them from left, are Stacey Bagg, Matt Czech, and Liliana Villareal, with EGS. Next to Blackwell-Thomson are Jeremy Graeber, deputy launch director, and Teresa Annulis.
NASA/Glenn Benson “I kind of came in about a couple of years before we started processing Artemis I,” Villarreal said. “It took a while to get to the good parts of operations where it’s like, ‘Oh my god, we have everything here, and we’re starting to put everything together. And every day is a different day. Every day we have to figure out, ‘OK, what happened? How are we going to solve it?’ That’s the fun part about being an engineer out here.”
Throughout her NASA career, she’s also had the opportunity to work in the operations division for the International Space Station Program.
Every day I work on the Artemis missions, I imagine how the people who worked on Apollo felt because we are where they were back then.
Liliana Villareal
Artemis Landing & Recovery Director
Currently, she and the team are training for Artemis II – the first crewed mission under Artemis to send four astronauts around the Moon and back. Part of the training includes rehearsing the steps and procedures to make sure they’re ready for crewed flights. This includes conducting underway recovery tests where NASA and U.S. Navy teams practice retrieving astronauts from a representative version of Orion at sea and bringing them and the spacecraft back to the ship.
“I think it’s an amazing thing what we’re doing for humanity,” Villarreal said. “It’s going to better humanity, and it’s a steppingstone to eventually us living in other worlds. And I get to be part of that. You get to be part of that. How cool is that?”
About the Author
Antonia Jaramillo
Share
Details
Last Updated Jun 04, 2025 Related Terms
Kennedy Space Center Artemis Exploration Ground Systems I Am Artemis Orion Multi-Purpose Crew Vehicle Explore More
4 min read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
Article 19 hours ago 4 min read Integrated Testing on Horizon for Artemis II Launch Preparations
Article 6 days ago 4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4554–4555: Let’s Try That One Again…
NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on May 28, 2025 — Sol 4553, or Martian day 4,553 of the Mars Science Laboratory mission — at 04:48:55 UTC. NASA/JPL-Caltech Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
Earth planning date: Wednesday, May 28, 2025
We came in early this morning and learned that part of Tuesday’s plan didn’t execute on Mars due to a temporary issue with the arm. We collected APXS data on the target “Palo Verde Mountains,” but were not able to take the corresponding MAHLI images or drive away. So it was a straightforward decision for the planning team today to pick up where we left off yesterday, giving ourselves a second chance to collect the MAHLI observation and then complete the same 29.5-meter drive to the west (about 97 feet) that we had planned on Tuesday.
We love making lemonade from lemons when things don’t go exactly as expected in rover tactical planning, and today was no exception. Since we’re sticking around for a little bit longer, the science team decided to collect additional mosaics of impressive nearby features, including a 15×2 Mastcam mosaic of the “Mishe Mokwa” hill and an 11×2 Mastcam mosaic of fractures near “Lake Cachuma.” We’re also having another go at taking the epically long, long-distance RMI mosaic of a crater 91 kilometers away from Curiosity (almost 57 miles) that we planned yesterday, and we’re playing around with the focus settings to see if we can get a sharper image.
The team also had time for a second RMI mosaic of our very well-imaged “Texoli” butte, and a ChemCam LIBS observation on a target named “Santa Monica Bay,” which is just above the “Sisquoc River” target we observed yesterday on the bumpy rock in our workspace. As usual, we will also continue to monitor the environment around us with REMS, RAD, Navcam, and Mastcam observations.
Share
Details
Last Updated May 30, 2025 Related Terms
Blogs Explore More
2 min read Sol 4553: Back to the Boxwork!
Article
13 hours ago
3 min read A Dust Devil Photobombs Perseverance!
Article
14 hours ago
4 min read Sols 4549-4552: Keeping Busy Over the Long Weekend
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.