Jump to content

Recommended Posts

  • Publishers
Posted
An image of crew of NASA’s SpaceX Crew-10 mission seated inside the spacecraft during an equipment test at the agency's Kennedy Space Center in Florida.
The crew of NASA’s SpaceX Crew-10 mission pictured during an equipment test at the agency’s Kennedy Space Center in Florida.
Credit: SpaceX

NASA will provide coverage of the upcoming prelaunch and launch activities for the agency’s SpaceX Crew-10 mission to the International Space Station.

Liftoff is targeted for 7:48 p.m. EDT, Wednesday, March 12, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The targeted docking time is approximately 10 a.m., Thursday, March 13.

Coverage of the mission overview teleconference will be available on the agency’s website. The crew news conference, launch, the postlaunch news conference, and docking will be live on NASA+. Learn how to stream NASA content through a variety of platforms, including social media.

The SpaceX Dragon spacecraft will carry NASA astronauts Anne McClain, commander; and Nichole Ayers, pilot; along with mission specialists JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov to the orbiting laboratory for a science mission of about four months. This is the 10th crew rotation mission and the 11th human spaceflight mission for NASA to the space station supported by the Dragon spacecraft since 2020 as part of the agency’s Commercial Crew Program.

The deadline for media accreditation for in person coverage of this launch has passed. The agency’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
Media who need access to NASA live video feeds may subscribe to the agency’s media resources distribution list to receive daily updates and links.

NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):

Friday, March 7

2 p.m. – Crew arrival media event at NASA Kennedy with the following participants:

  • Anne McClain, Crew-10 spacecraft commander, NASA
  • Nichole Ayers, Crew-10 pilot, NASA
  • Takuya Onishi, Crew-10 mission specialist, JAXA
  • Kirill Peskov, Crew-10 mission specialist, Roscosmos

Watch live coverage of the crew arrival media event on NASA Kennedy’s social media accounts.

This event is open to in person media only previously credentialed for this event, and questions will be taken only during the crew news conference scheduled for later that day. Follow @CommercialCrew and @NASAKennedy on X for the latest arrival updates.
5:30 p.m. – Mission overview teleconference at NASA Kennedy (or no earlier than one hour after the completion of the Flight Readiness Review) with the following participants:

  • Ken Bowersox, associate administrator, Space Operations Mission Directorate, NASA Headquarters in Washington
  • Steve Stich, manager, Commercial Crew Program, NASA Kennedy
  • Dana Weigel, manager, International Space Station Program, NASA’s Johnson Space Center in Houston
  • Meg Everett, deputy chief scientist, NASA’s International Space Station Program, NASA Johnson
  • William Gerstenmaier, vice president, Build and Flight Reliability, SpaceX
  • Junichi Sakai, manager, International Space Station Program, JAXA

NASA will provide audio-only coverage of the teleconference.

Media may ask questions in person and via phone. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 4 p.m., Friday, March 7, at ksc-newsroom@mail.nasa.gov.
6:30 p.m. – Crew-10 crew news conference (or directly following the completion of the mission overview news conference) with the following participants:

  • Anne McClain, Crew-10 spacecraft commander, NASA
  • Nichole Ayers, Crew-10 pilot, NASA
  • Takuya Onishi, Crew-10 mission specialist, JAXA
  • Kirill Peskov, Crew-10 mission specialist, Roscosmos

Watch live coverage of the mission overview news conference on NASA+.

Media may ask questions via phone only. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 4 p.m., Friday, March 7, at: ksc-newsroom@mail.nasa.gov.

Wednesday, March 12

3:45 p.m. – Launch coverage begins on NASA+.

7:48 p.m. – Launch

Following the conclusion of launch and ascent coverage, NASA will switch to audio only and continue audio coverage through Thursday, March 13. Continuous coverage resumes on NASA+ at the start of rendezvous and docking and continues through hatch opening and the welcome ceremony.
9:30 p.m. – Postlaunch news conference with the following participants:

  • Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate
  • Steve Stich, manager, Commercial Crew Program, NASA Kennedy
  • Dana Weigel, manager, International Space Station Program, NASA Johnson
  • Sarah Walker, director, Dragon Mission Management, SpaceX
  • Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA

Watch live coverage of the postlaunch news conference on NASA+.

Media may ask questions in person and via phone. Limited auditorium space will be available for in person participation. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 8:30 p.m., Wednesday, March 12, at ksc-newsroom@mail.nasa.gov.

Thursday, March 13

8:15 a.m. – Arrival coverage begins on NASA+.

10 a.m. – Targeted docking to the forward-facing port of the station’s Harmony module

11:45 a.m. – Hatch opening

12:20 p.m. – Welcome ceremony

All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.

Live Video Coverage Prior to Launch

NASA will provide a live video feed of Launch Complex 39A approximately six hours prior to the planned liftoff of the Crew-10 mission. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA+, approximately four hours prior to launch. Once the feed is live, find it online at: http://youtube.com/kscnewsroom.

NASA Website Launch Coverage
Launch day coverage of the mission will be available on the NASA website. Coverage will include livestreaming and blog updates beginning no earlier than 3:45 p.m., March 12, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on the commercial crew or Crew-10 blog.

Attend Launch Virtually

Members of the public may register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.

Watch, Engage on Social Media

Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Crew10 and #NASASocial. You may also stay connected by following and tagging these accounts:

X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @SpaceX, @Commercial_Crew

Facebook: NASA, NASAKennedy, ISS, ISS National Lab

Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab, @SpaceX

Coverage en Espanol

Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425; antonia.jaramillobotero@nasa.gov; o Messod Bendayan: 256-930-1371; messod.c.bendayan@nasa.gov.

NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low Earth orbit and the International Space Station to more people, more science, and more commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars.

For more information about the mission, visit:

https://www.nasa.gov/commercialcrew

-end-

Joshua Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

Steven Siceloff / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov

Kenna Pell
Johnson Space Center, Houston
281-483-5111
kenna.m.pell@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Northrop Grumman Commercial Resupply Services 23 Launch
    • By NASA
      Progress 93 Cargo Ship Docking
    • By NASA
      Northrop Grumman’s Cygnus cargo craft awaits its capture by the International Space Stations’ Canadarm2 robotic arm, commanded by NASA astronaut Matthew Dominick on Aug. 6, 2024.Credit: NASA NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23, will deliver more than 11,000 pounds of science and supplies to the International Space Station. This mission will be the first flight of the Cygnus XL, the larger, more cargo-capable version of the company’s solar-powered spacecraft.

      The Cygnus XL will launch on a SpaceX Falcon 9 rocket from the Cape Canaveral Space Force Station in Florida.  Following arrival, astronauts aboard the space station will use the Canadarm2 to grapple Cygnus XL before robotically installing the spacecraft to the Unity module’s Earth-facing port for cargo unloading. Stream live launch and arrival coverage on NASA+, Amazon Prime, YouTube.

      Mission Infographics

      NASA’s Northrop Grumman 23 commercial resupply mission will launch on a SpaceX Falcon 9 rocket to deliver research and supplies to the International Space Station.NASA NASA’s Northrop Grumman 23 commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.NASA NASA selected William “Willie” McCool as an astronaut in 1996. McCool flew as a pilot on STS-107, his first mission. The STS-107 crew, including McCool, died on February 1, 2003, when space shuttle Columbia was lost during reentry over east Texas at about 9 a.m. EST, 16 minutes prior to the scheduled touchdown and NASA’s Kennedy Space Center. NASA’s Northrop Grumman 23 spacecraft is named in his honor.NASA NASA astronauts Jonny Kim and Zena Cardman will be on duty during the Cygnus spacecraft’s approach and rendezvous. Kim will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as Cardman monitors the vehicle’s arrival.NASA Mission Hardware

      IDA Planar Reflector – This is a reflective element used by visiting spacecraft during docking. The spacecraft bounces a laser off the reflector to compute relative range, velocity, and attitude on approach to the International Space Station. Due to degradation found on the installed reflector, this unit will launch to support a future spacewalk to replace the damaged reflector.

      Urine Processing Assembly (UPA) Distillation Assembly – The urine processor on the space station uses filtration and distillation to separate water from wastewater to produce potable water. This unit is launching as a spare.

      Reactor Health Sensor – Part of the Environmental Control and Life Support System – Water Processing Assembly, includes two sensors with inlet and outlet ports to measure reactor health. This unit is being launched as a spare.

      Pressure Management Device – This is an intravehicular activity system for performing pressurization and depressurization of the space station vestibules between the space station hatch and the hatch of a visiting spacecraft or other module, like the NanoRacks Airlock. During depressurization, most of the air will be added to the space station cabin air to save the valuable resource.

      Air Selector Valve – This electro-mechanical assembly is used to direct airflow through the Carbon Dioxide Removal Assembly. Two units are launching as spares.

      Major Constituent Analyzer Mass Spectrometer Assembly – This assembly monitors the partial pressure levels of nitrogen, oxygen, hydrogen, methane, water vapor, and carbon dioxide aboard station. This unit is launching as a contingency spare.

      Major Constituent Analyzer Mass Sample/Series Pump Assembly – This contains plumbing and a pair of solenoid valves to direct sample gas flow to either of the redundant sample pumps. It draws sample gas from the space station’s atmosphere into the analyzer. This unit is launching as a contingency spare.

      Major Constituent Analyzer Sample Distribution Assembly – This isolates the gas sample going to the Mass Spectrometer Assembly. The purpose is to distribute gas samples throughout the analyzer. This unit is launching as a contingency spare.

      Charcoal Bed – The bed allows the Trace Contaminant Control System to remove high molecular weight contaminants from the station’s atmosphere. This unit is launching as a spare.

      Common Cabin Air Assembly Heat Exchanger – This assembly controls cabin air temperature, humidity, and airflow aboard the space station. This unit is launching as a spare.

      Sequential Shunt Unit – This regulates the solar array wing voltage when experiencing high levels of direct sunlight; in doing so, it provides usable power to the station’s primary power system. This unit is launching as a spare.

      Solid State Lighting Assembly – This is a specialized internal lighting assembly aboard station. NASA will use one lighting assembly to replace a failed unit and will keep the others as spares.

      Remote Power Control Module Type V – This module distributes 120V/DC electrical power and provides current-limiting and fault protection to secondary loads aboard the orbiting laboratory. This module is launching as a spare.

      Treadmill Isolator Assembly – The Upper, X, Y, and Z Isolator Assemblies are launching as spares for the space station’s treadmill, where they work together to reduce vibration and force transfer when astronauts are running.

      Pump Fan Motor Controller – The controller is an electronic controller to modulate the power to the motor windings, which are coils of conductive wire that are wrapped around its core carrying electric current to drive the motor. Windings are commonly used in household appliances, cars (power steering), pumps, and more.

      Quick Don Mask Assembly – This mask is used by the crew, along with the Pre-Breath Assembly, in emergency situations. This unit is launching to replace a unit aboard station.

      Anomaly Gas Analyzer – This analyzer senses various gases, like oxygen, carbon dioxide, carbon monoxide, ammonia, and others, along with cabin pressure, water vapor and temperature. Two units are launching as an upgrade to the current analyzer system used on board.

      Nitrogen, Oxygen Resupply Maintenance Kit – One tank of nitrogen and one tank of oxygen used for gas replenishment aboard the space station are launching to maintain gas reserves.

      Crew and Equipment Translation Aid Luminaire – This is a lighting unit used aboard station to illuminate the astronauts’ equipment cart and surrounding work areas during spacewalks.


      View the full article
    • By Space Force
      The first Proliferated Warfighter Space Architecture Tranche 1 Transport Layer space vehicles successfully launched from Vandenberg Space Force Base.

      View the full article
    • By European Space Agency
      The fourth satellite for the Copernicus Sentinel-1 mission, Sentinel-1D, has arrived at Félix Eboué airport, the main airport in French Guiana. From there the spacecraft, safely stored in its protective casing, will be transported to launch preparation facilities at the European Spaceport in Kourou.
      View the full article
  • Check out these Videos

×
×
  • Create New...