Jump to content

FARMing with Data: OpenET Launches new Tool for Farmers and Ranchers


Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A picture of two white men standing in a cornfield. The one on the left is mid-thirties, with dark brown hair and beard and wearing a gray t-shirt. The man on the right is older, clean-shaven and wearing glasses and a navy blue collared shirt.
Dwane Roth (right), a fourth generation grain farmer in Finney County, Kansas, stands with nephew Zion (left) in one of their corn fields. Roth’s farm became one of the first Water Technology Farms in Kansas around 2016, and he has been using OpenET data for the past few years to track evapotranspiration rates and conserve water.
Photo courtesy of Dwane Roth

A NASA and U.S. Geological Survey (USGS)-supported research and development team is making it easier for farmers and ranchers to manage their water resources.

The team, called OpenET, created the Farm and Ranch Management Support (FARMS) tool, which puts timely, high-resolution water data directly in the hands of individuals and small farm operators. By making the information more accessible, the platform can better support decision-making around agricultural planning, water conservation, and water efficiency.  The OpenET team hopes this will help farmers who are working to build greater resiliency in local and regional agriculture communities. build greater resiliency in local and regional agriculture communities.

“It’s all about finding new ways to make satellite data easier to access and use for as many people as possible,” said Forrest Melton, the OpenET project scientist at NASA’s Ames Research Center in Silicon Valley. “The goal is to empower users with actionable, science-based data to support decisions about water management across the West.”

The goal is to empower users with actionable, science-based data to support decisions about water management across the West.

Forrest melton

Forrest melton

OpenET Project Scientist

OpenET Data Explorer Tool: The Road to FARMS

The OpenET data explorer tool centers on providing evapotranspiration data. Evapotranspiration (ET) refers to the amount of water leaving Earth’s surface and returning to the atmosphere through evaporation (from soil and surface water) and transpiration (water vapor released by crops and other plants). Evapotranspiration is an important factor in agriculture, water resource management, irrigation planning, drought monitoring, and fire risk evaluation.

The FARMS resource is the third phase of OpenET’s Data Explorer tool, launched in 2021, which uses satellite data to quantify evapotranspiration across the western U.S.

It starts with using Landsat data to measure patterns in land surface temperature and key indicators of vegetation conditions. The satellite data is combined with agricultural data, such as field boundaries, and weather data, such as air temperature, humidity, solar radiation, wind speed, and precipitation. All of these factors feed into a model, which calculates the final evapotranspiration data.

The new FARMS interface was designed to make that data easier to access, with features that meet specific needs identified by users.

“This amount of data can be complicated to use, so user input helped us shape FARMS,” said Jordan Harding, app developer and interface design leader from HabitatSeven. “It provides a mobile-friendly, map-based web interface designed to make it easy as possible to get automated, regular reports.”

A top-bottom comparison of the same four fields: all circles except for the top right field, which is shaped like Pacman. The top is a scan of a satellite image, with labels drawn in thick black marker describing the crop type and amount. The bottom image is an electronic dashboard with the fields on the left, each in their own color, and a graph on the right with four lines the same color as the fields.
Top: A section of the 2024 annual report Roth submits to the Farm Service Agency, with hand-written annotations marking which crop will be grown that year. Bottom: Those same fields in the new OpenET FARMS interface, with a dashboard on the left displaying evapotranspiration data over the course of 2024 at monthly intervals. Each color line corresponds to the same color field on the map, showcasing how much evapotranspiration rates can differ between different crops in the same vicinity. The unique shape of the purple field (forage sorghum), is an example of a case where FARMS’ custom shape feature is helpful. Once the initial report is set up, Roth can re-run reports for the same fields at any time.
NASA/OpenET

“The FARMS tool is designed to help farmers optimize irrigation timing and amounts, simplify planning for the upcoming irrigation season, and automate ET and water use reporting,” said Sara Larsen, CEO of OpenET. “All of this reduces waste, lowers costs, and informs crop planning.”

Although FARMS is geared towards agriculture, the tool has value for other audiences in the western U.S. Land managers who evaluate the impacts of wildfire can use it to evaluate burn scars and changes to local hydrology. Similarly, resource managers can track evapotranspiration changes over time to evaluate the effectiveness of different forest management plans.

New Features in FARMS

To develop FARMS, the OpenET team held listening sessions with farmers, ranchers, and resource managers. One requested function was support for field-to-field comparisons; a feature for planning irrigation needs and identifying problem areas, like where pests or weeds may be impacting crop yields.

The tool includes numerous options for drawing or selecting field boundaries, generating custom reports based on selected models and variables, and  automatically re-running reports at daily or monthly intervals.

The fine spatial resolution and long OpenET data record behind FARMS make these features more effective. Many existing global ET data products have a pixel size of over half a mile, which is too big to be practical for most farmers and ranchers. The FARMS interface provides insights at the scale of a quarter-acre per pixel, which offers multiple data points within an individual field.

“If I had told my father about this 15 years ago, he would have called me crazy,” said Dwane Roth, a fourth-generation farmer in Kansas. “Thanks to OpenET, I can now monitor water loss from my crops in real-time. By combining it with data from our soil moisture probes, this tool is enabling us to produce more food with less water. It’s revolutionizing agriculture.”

Two screenshots of a smartphone interface. The right is a satellite image of an orchard, with one orchard field colored in purple. The left is an electronic dhasboard with a single purple line graph that spikes up and back down five times at regular intervals.
The FARMS mobile interface displays a six-year evapotranspiration report of a pear orchard owned by sixth-generation California farmer Brett Baker. The purple line in the dashboard report (left) corresponds with the field selected in purple on the map view (right), which users can toggle between using the green buttons in the top right corners. Running multi-year reports allows farmers to review historical trends.
NASA/OpenET

For those like sixth-generation California pear farmer Brett Baker, the 25-year span of ET data is part of what makes the tool so valuable. “My family has been farming the same crop on the same piece of ground for over 150 years,” Baker said. “Using FARMS gives us the ability to review historical trends and changes to understand what worked and what didn’t year to year: maybe I need to apply more fertilizer to that field, or better weed control to another. Farmers know their land, and FARMS provides a new tool that will allow us to make better use of land and resources.”

According to Roth, the best feature of the tool is intangible.  “Being a farmer is stressful,” Roth said. “OpenET is beneficial for the farm and the agronomic decisions, but I think the best thing it gives me is peace of mind.”

Being a farmer is stressful. OpenET is beneficial for the farm and the agronomic decisions, but I think the best thing it gives me is peace of mind.

Dwane Roth

Dwane Roth

Fourth-Generation Kansas Grain Farmer

Continuing Evolution of FARMS

Over the coming months, the OpenET team plans to present the new tool at agricultural conferences and conventions in order to gather feedback from as many users as possible. “We know that there is already a demand for a seven-day forecast of ET, and I’m sure there will be requests about the interface itself,” said OpenET senior software engineer Will Carrara. “We’re definitely looking to the community to help us further refine that platform.”

“I think there are many applications we haven’t even thought of yet,” Baker added. “The FARMS interface isn’t just a tool; it’s an entirely new toolbox itself. I’m excited to see what people do with it.”

FARMS was developed through a public-private collaboration led by NASA, USGS, USDA, the non-profit OpenET, Inc., Desert Research Institute, Environmental Defense Fund, Google Earth Engine, HabitatSeven, California State University Monterey Bay, Chapman University, Cornell University, University of Nebraska-Lincoln, UC Berkeley and other universities, with input from more than 100 stakeholders.

To use FARMS, please visit: https://farms.etdata.org/

For additional resources/tutorials on how to use FARMS, please visit: https://openet.gitbook.io/docs/additional-resources/farms

About the Author

Milan Loiacono

Milan Loiacono

Science Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Prelaunch News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      Three New Missions Launch to Track Space Weather
    • By NASA
      One of the challenges many teachers face year after year is a sense of working alone. Despite the constant interaction with students many questions often linger: Did the lesson stick? Will students carry this knowledge with them? Will it shape how they see and engage with the world? What can be easy to overlook is that teaching does not happen in isolation. Each classroom, or any other educational setting, is part of a much larger journey that learners travel. This journey extends through a network of educators, where each experience can build on the last. These interconnected networks, known as Connected Learning Ecosystems (CLEs), exist wherever learning happens. At their core, CLEs are the collective of people who contribute to a young person’s growth and education over time.
      Educators at the August 2025 Connected Learning Ecosystems Gathering in Orono, ME engaged in discussion around using NASA data in their learning contexts. Recognizing this, NASA’s Science Activation Program launched the Learning Ecosystems Northeast (LENE) project to strengthen and connect regional educator networks across Maine and the broader Northeast. With a shared focus on Science, Technology, Engineering, and Mathematics (STEM), LENE brings together teachers, librarians, 4-H mentors, land trust educators, and many others committed to expanding scientific understanding, deepening data literacy, and preparing youth to navigate a changing planet. To support this work, LENE hosts biannual Connected Learning Ecosystem Gatherings. These multi-day events bring educators together to share progress, celebrate achievements, and plan future collaborations. More than networking, these gatherings reinforce the collective impact educators have, ensuring that their efforts resonate far beyond individual classrooms and enrich the lives of the learners they guide.
      “I am inspired by the GMRI staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of this the LENE community. This was a very well-run event! Thank you to all!” -anonymous


      This year’s Gathering took place August 12 and 13, 2025, in Orono, ME at the University of Maine (a LENE project partner). Nearly 70 educators from across the northeast came together for two amazingly energized days of connection, learning, and future planning. While each event is special, this summer’s Gathering was even more remarkable due to the fact that for, the first time, each workshop was led by an established LENE educator. Either by self-nomination or request from leadership (requiring little convincing), every learning experience shared over the conference days was guided by the thoughtful investigation and real life application of LENE Project Partners, CLE Lead Educators, and community collaborators.
      Brian Fitzgerald and Jackie Bellefontaine from the Mount Washington Observatory in New Hampshire, a LENE Project Partner, led the group through a hands-on activity using NASA data and local examples to observe extreme weather. Librarian Kara Reiman guided everyone through the creation and use of a newly established Severe Weather Disaster Prep Kit, including games and tools to manage climate anxiety. Katrina Heimbach, a long time CLE constituent from Western Maine taught how to interpret local data using a creative and fun weaving technique. Because of the established relationship between Learning Ecosystems Northeast and the University of Maine, attendees to the Gathering were able to experience a guided tour through the Advanced Structures and Composites Center and one of its creations, the BioHome3D – the world’s first 3D printed house made entirely with forest-derived, recyclable materials.
      Two full days of teachers leading teachers left the entire group feeling energized and encouraged, connected, and centered. The increased confidence in their practices gained by sustained support from their peers allowed these educators to step up and share – embodying the role of Subject Matter Expert. Seeing their colleagues take center stage makes it easier for other educators to envision themselves in similar roles and provides clear guidance on how to take those steps themselves. One educator shared their thoughts following the experience:
      “This was my first time attending the LENE conference, and I was immediately welcomed and made to feel ‘part of it all’. I made connections with many of the educators who were present, as well as the LENE staff and facilitators. I hope to connect with my new CLE mates in the near future!” Another participant reported, “I am inspired by the … staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of the LENE community. This was a very well-run event! Thank you to all!”
      Even with the backing of regional groups, many educators, especially those in rural communities, still struggle with a sense of isolation. The biannual gatherings play an important role in countering that, highlighting the fact that this work is unfolding across the state. Through Connected Learning Ecosystems, educators are able to build and reinforce networks that help close the gaps created by distance and geography.
      These Gatherings are part of ongoing programming organized by Learning Ecosystems Northeast, based at the Gulf of Maine Research Institute, that fosters peer communities across the Northeast, through which teachers, librarians, and out-of-school educators can collaborate to expand opportunities for youth to engage in data-driven investigations and integrate in- and out-of-school learning. Learn more about Learning Ecosystems Northeast’s efforts to empower the next generation of environmental stewards: https://www.learningecosystemsnortheast.org.
      The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/.
      Share








      Details
      Last Updated Sep 15, 2025 Related Terms
      Earth Science Science Activation Explore More
      13 min read The Earth Observer Editor’s Corner: July–September 2025


      Article


      5 days ago
      21 min read Summary of the 11th ABoVE Science Team Meeting


      Article


      5 days ago
      5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini


      Article


      3 weeks ago
      View the full article
    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
  • Check out these Videos

×
×
  • Create New...