Jump to content

FARMing with Data: OpenET Launches new Tool for Farmers and Ranchers


Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A picture of two white men standing in a cornfield. The one on the left is mid-thirties, with dark brown hair and beard and wearing a gray t-shirt. The man on the right is older, clean-shaven and wearing glasses and a navy blue collared shirt.
Dwane Roth (right), a fourth generation grain farmer in Finney County, Kansas, stands with nephew Zion (left) in one of their corn fields. Roth’s farm became one of the first Water Technology Farms in Kansas around 2016, and he has been using OpenET data for the past few years to track evapotranspiration rates and conserve water.
Photo courtesy of Dwane Roth

A NASA and U.S. Geological Survey (USGS)-supported research and development team is making it easier for farmers and ranchers to manage their water resources.

The team, called OpenET, created the Farm and Ranch Management Support (FARMS) tool, which puts timely, high-resolution water data directly in the hands of individuals and small farm operators. By making the information more accessible, the platform can better support decision-making around agricultural planning, water conservation, and water efficiency.  The OpenET team hopes this will help farmers who are working to build greater resiliency in local and regional agriculture communities. build greater resiliency in local and regional agriculture communities.

“It’s all about finding new ways to make satellite data easier to access and use for as many people as possible,” said Forrest Melton, the OpenET project scientist at NASA’s Ames Research Center in Silicon Valley. “The goal is to empower users with actionable, science-based data to support decisions about water management across the West.”

The goal is to empower users with actionable, science-based data to support decisions about water management across the West.

Forrest melton

Forrest melton

OpenET Project Scientist

OpenET Data Explorer Tool: The Road to FARMS

The OpenET data explorer tool centers on providing evapotranspiration data. Evapotranspiration (ET) refers to the amount of water leaving Earth’s surface and returning to the atmosphere through evaporation (from soil and surface water) and transpiration (water vapor released by crops and other plants). Evapotranspiration is an important factor in agriculture, water resource management, irrigation planning, drought monitoring, and fire risk evaluation.

The FARMS resource is the third phase of OpenET’s Data Explorer tool, launched in 2021, which uses satellite data to quantify evapotranspiration across the western U.S.

It starts with using Landsat data to measure patterns in land surface temperature and key indicators of vegetation conditions. The satellite data is combined with agricultural data, such as field boundaries, and weather data, such as air temperature, humidity, solar radiation, wind speed, and precipitation. All of these factors feed into a model, which calculates the final evapotranspiration data.

The new FARMS interface was designed to make that data easier to access, with features that meet specific needs identified by users.

“This amount of data can be complicated to use, so user input helped us shape FARMS,” said Jordan Harding, app developer and interface design leader from HabitatSeven. “It provides a mobile-friendly, map-based web interface designed to make it easy as possible to get automated, regular reports.”

A top-bottom comparison of the same four fields: all circles except for the top right field, which is shaped like Pacman. The top is a scan of a satellite image, with labels drawn in thick black marker describing the crop type and amount. The bottom image is an electronic dashboard with the fields on the left, each in their own color, and a graph on the right with four lines the same color as the fields.
Top: A section of the 2024 annual report Roth submits to the Farm Service Agency, with hand-written annotations marking which crop will be grown that year. Bottom: Those same fields in the new OpenET FARMS interface, with a dashboard on the left displaying evapotranspiration data over the course of 2024 at monthly intervals. Each color line corresponds to the same color field on the map, showcasing how much evapotranspiration rates can differ between different crops in the same vicinity. The unique shape of the purple field (forage sorghum), is an example of a case where FARMS’ custom shape feature is helpful. Once the initial report is set up, Roth can re-run reports for the same fields at any time.
NASA/OpenET

“The FARMS tool is designed to help farmers optimize irrigation timing and amounts, simplify planning for the upcoming irrigation season, and automate ET and water use reporting,” said Sara Larsen, CEO of OpenET. “All of this reduces waste, lowers costs, and informs crop planning.”

Although FARMS is geared towards agriculture, the tool has value for other audiences in the western U.S. Land managers who evaluate the impacts of wildfire can use it to evaluate burn scars and changes to local hydrology. Similarly, resource managers can track evapotranspiration changes over time to evaluate the effectiveness of different forest management plans.

New Features in FARMS

To develop FARMS, the OpenET team held listening sessions with farmers, ranchers, and resource managers. One requested function was support for field-to-field comparisons; a feature for planning irrigation needs and identifying problem areas, like where pests or weeds may be impacting crop yields.

The tool includes numerous options for drawing or selecting field boundaries, generating custom reports based on selected models and variables, and  automatically re-running reports at daily or monthly intervals.

The fine spatial resolution and long OpenET data record behind FARMS make these features more effective. Many existing global ET data products have a pixel size of over half a mile, which is too big to be practical for most farmers and ranchers. The FARMS interface provides insights at the scale of a quarter-acre per pixel, which offers multiple data points within an individual field.

“If I had told my father about this 15 years ago, he would have called me crazy,” said Dwane Roth, a fourth-generation farmer in Kansas. “Thanks to OpenET, I can now monitor water loss from my crops in real-time. By combining it with data from our soil moisture probes, this tool is enabling us to produce more food with less water. It’s revolutionizing agriculture.”

Two screenshots of a smartphone interface. The right is a satellite image of an orchard, with one orchard field colored in purple. The left is an electronic dhasboard with a single purple line graph that spikes up and back down five times at regular intervals.
The FARMS mobile interface displays a six-year evapotranspiration report of a pear orchard owned by sixth-generation California farmer Brett Baker. The purple line in the dashboard report (left) corresponds with the field selected in purple on the map view (right), which users can toggle between using the green buttons in the top right corners. Running multi-year reports allows farmers to review historical trends.
NASA/OpenET

For those like sixth-generation California pear farmer Brett Baker, the 25-year span of ET data is part of what makes the tool so valuable. “My family has been farming the same crop on the same piece of ground for over 150 years,” Baker said. “Using FARMS gives us the ability to review historical trends and changes to understand what worked and what didn’t year to year: maybe I need to apply more fertilizer to that field, or better weed control to another. Farmers know their land, and FARMS provides a new tool that will allow us to make better use of land and resources.”

According to Roth, the best feature of the tool is intangible.  “Being a farmer is stressful,” Roth said. “OpenET is beneficial for the farm and the agronomic decisions, but I think the best thing it gives me is peace of mind.”

Being a farmer is stressful. OpenET is beneficial for the farm and the agronomic decisions, but I think the best thing it gives me is peace of mind.

Dwane Roth

Dwane Roth

Fourth-Generation Kansas Grain Farmer

Continuing Evolution of FARMS

Over the coming months, the OpenET team plans to present the new tool at agricultural conferences and conventions in order to gather feedback from as many users as possible. “We know that there is already a demand for a seven-day forecast of ET, and I’m sure there will be requests about the interface itself,” said OpenET senior software engineer Will Carrara. “We’re definitely looking to the community to help us further refine that platform.”

“I think there are many applications we haven’t even thought of yet,” Baker added. “The FARMS interface isn’t just a tool; it’s an entirely new toolbox itself. I’m excited to see what people do with it.”

FARMS was developed through a public-private collaboration led by NASA, USGS, USDA, the non-profit OpenET, Inc., Desert Research Institute, Environmental Defense Fund, Google Earth Engine, HabitatSeven, California State University Monterey Bay, Chapman University, Cornell University, University of Nebraska-Lincoln, UC Berkeley and other universities, with input from more than 100 stakeholders.

To use FARMS, please visit: https://farms.etdata.org/

For additional resources/tutorials on how to use FARMS, please visit: https://openet.gitbook.io/docs/additional-resources/farms

About the Author

Milan Loiacono

Milan Loiacono

Science Communication Specialist

Milan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA tested RS-25 engine No. 20001 on June 20, at the Fred Haise Test Stand at NASA’s Stennis Space Center at Bay St. Louis, Mississippi. Test teams fired the engine for almost eight-and-a-half minutes (500 seconds), the same amount of time RS-25 engines fire during a launch of an SLS (Space Launch System) rocket on Artemis missions to the Moon. NASA NASA tested RS-25 engine No. 20001 on June 20, at the Fred Haise Test Stand at NASA’s Stennis Space Center at Bay St. Louis, Mississippi. Test teams fired the engine for almost eight-and-a-half minutes (500 seconds), the same amount of time RS-25 engines fire during a launch of an SLS (Space Launch System) rocket on Artemis missions to the Moon. The Artemis campaign will explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      Four RS-25 engines, built by contractor L3Harris Technologies (formerly Aerojet Rocketdyne), help power each SLS launch, producing up to 2 million pounds of combined thrust. During the test, operators also fired engine No. 20001 up to the 111% power level, the same amount of thrust needed to launch an SLS rocket, carrying the Orion spacecraft, to orbit. The full-duration “hot fire” was the first test since NASA completed certification testing for new production RS-25 engines in 2024.
      All RS-25 engines are tested and proven flightworthy at NASA Stennis. The test was conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
      Explore More NASA Stennis Images View the full article
    • By NASA
      NASA astronauts (left to right) Anne McClain and Nichole Ayers pose for a portrait together aboard the International Space Station. Moments earlier, Ayers finished trimming McClain’s hair using an electric razor with a suction hose attached that collects the loose hair to protect the station’s atmosphere.NASA Students from New York and Utah will hear from NASA astronauts aboard the International Space Station as they answer prerecorded questions in two separate events.
      At 11:30 a.m. EDT on Monday, June 23, NASA astronauts Nichole Ayers and Anne McClain will answer questions submitted by students from P.S. 71 Forest Elementary School in Ridgewood, New York. Media interested in covering the event must RSVP by 5 p.m. Friday, June 20, to Regina Beshay at: rbeshay2@school.nyc.gov or 347-740-6165.
      At 11:05 a.m. on Friday, June 27, Ayers and McClain will answer questions submitted by students from Douglas Space and Science Foundation, Inc., in Layton, Utah. Media interested in covering the event must RSVP by 5 p.m. Wednesday, June 25, to Sarah Merrill at: sarahmonique@gmail.com or 805-743-3341.
      Watch the 20-minute Earth-to-space calls on NASA STEM YouTube Channel.
      P.S. 71 Forest Elementary School will host kindergarten through fifth grade students. Douglas Space and Science Foundation will host participants from the Science, Technology, Achievement Research camp. Both events aim to inspire students to imagine a future in science, technology, engineering, and mathematics careers through ongoing collaborations, mentorship, and hands-on learning experiences.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jun 18, 2025 LocationNASA Headquarters Related Terms
      Humans in Space In-flight Education Downlinks International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      A NASA-sponsored team is creating a new approach to measure magnetic fields by developing a new system that can both take scientific measurements and provide spacecraft attitude control functions. This new system is small, lightweight, and can be accommodated onboard the spacecraft, eliminating the need for the boom structure that is typically required to measure Earth’s magnetic field, thus allowing smaller, lower-cost spacecraft to take these measurements. In fact, this new system could not only enable small spacecraft to measure the magnetic field, it could replace the standard attitude control systems in future spacecraft that orbit Earth, allowing them to provide the important global measurements that enable us to understand how Earth’s magnetic field protects us from dangerous solar particles.

      Photo of the aurora (taken in Alaska) showing small scale features that are often present. Credit: NASA/Sebastian Saarloos
      Solar storms drive space weather that threatens our many assets in space and can also disrupt Earth’s upper atmosphere impacting our communications and power grids. Thankfully, the Earth’s magnetic field protects us and funnels much of that energy into the north and south poles creating aurorae. The aurorae are a beautiful display of the electromagnetic energy and currents that flow throughout the Earth’s space environment. They often have small-scale magnetic features that affect the total energy flowing through the system. Observing these small features requires multiple simultaneous observations over a broad range of spatial and temporal scales, which can be accomplished by constellations of small spacecraft.
      To enable such constellations, NASA is developing an innovative hybrid magnetometer that makes both direct current (DC) and alternating current (AC) magnetic measurements and is embedded in the spacecraft’s attitude determination and control system (ADCS)—the system that enables the satellite to know and control where it is pointing. High-performance, low SWAP+C (low-size, weight and power + cost) instruments are required, as is the ability to manufacture and test large numbers of these instruments within a typical flight build schedule. Future commercial or scientific satellites could use these small, lightweight embedded hybrid magnetometers to take the types of measurements that will expand our understanding of space weather and how Earth’s magnetic field responds to solar storms
      It is typically not possible to take research-quality DC and AC magnetic measurements using sensors within an ADCS since the ADCS is inside the spacecraft and near contaminating sources of magnetic noise such as magnetic torque rods—the electromagnets that generate a magnetic field and push against the Earth’s magnetic field to control the orientation of a spacecraft. Previous missions that have flown both DC and AC magnetometers placed them on long booms pointing in opposite directions from the satellite to keep the sensors as far from the spacecraft and each other as possible. In addition, the typical magnetometer used by an ADCS to measure the orientation of the spacecraft with respect to the geomagnetic field does not sample fast enough to measure the high-frequency signals needed to make magnetic field observations.
      A NASA-sponsored team at the University of Michigan is developing a new hybrid magnetometer and attitude determination and control system (HyMag-ADCS) that is a low-SWAP single package that can be integrated into a spacecraft without booms. HyMag-ADCS consists of a three-axis search coil AC magnetometer and a three-axis Quad-Mag DC magnetometer. The Quad-Mag DC magnetometer uses machine learning to enable boomless DC magnetometery, and the hybrid search-coil AC magnetometer includes attitude determination torque rods to enable the single 1U volume (103 cm) system to perform ADCS functions as well as collect science measurements.
      The magnetic torque rod and search coil sensor (left) and the Quad-Mag magnetometer prototype (right). Credit: Mark Moldwin The HyMag-ADCS team is incorporating the following technologies into the system to ensure success.
      Quad-Mag Hardware: The Quad-Mag DC magnetometer consists of four magneto-inductive magnetometers and a space-qualified micro-controller mounted on a single CubeSat form factor (10 x 10 cm) printed circuit board. These two types of devices are commercially available. Combining multiple sensors on a single board increases the instrument’s sensitivity by a factor of two compared to using a single sensor. In addition, the distributed sensors enable noise identification on small satellites, providing the science-grade magnetometer sensing that is key for both magnetic field measurements and attitude determination. The same type of magnetometer is part of the NASA Artemis Lunar Gateway Heliophysics Environmental and Radiation Measurement Experiment Suite (HERMES) Noisy Environment Magnetometer in a Small Integrated System (NEMISIS) magnetometer scheduled for launch in early 2027.
      Dual-use Electromagnetic Rods: The HyMag-ADCS team is using search coil electronics and torque rod electronics that were developed for other efforts in a new way. Use of these two electronics systems enables the electromagnetic rods in the HyMag-ADCS system to be used in two different ways—as torque rods for attitude determination and as search coils to make scientific measurements. The search coil electronics were designed for ground-based measurements to observe ultra-low frequency signals up to a few kHz that are generated by magnetic beacons for indoor localization. The torque rod electronics were designed for use on CubeSats and have flown on several University of Michigan CubeSats (e.g., CubeSat-investigating Atmospheric Density Response to Extreme driving [CADRE]). The HyMag-ADCS concept is to use the torque rod electronics as needed for attitude control and use the search coil electronics the rest of the time to make scientific AC magnetic field measurements.
      Machine Learning Algorithms for Spacecraft Noise Identification: Applying machine learning to these distributed sensors will autonomously remove noise generated by the spacecraft. The team is developing a powerful Unsupervised Blind Source Separation (UBSS) algorithm and a new method called Wavelet Adaptive Interference Cancellation for Underdetermined Platforms (WAIC-UP) to perform this task, and this method has already been demonstrated in simulation and the lab.
      The HyMag-ADCS system is early in its development stage, and a complete engineering design unit is under development. The project is being completed primarily with undergraduate and graduate students, providing hands-on experiential training for upcoming scientists and engineers.
      Early career electrical engineer Julio Vata and PhD student Jhanene Heying-Melendrez with art student resident Ana Trujillo Garcia in the magnetometer lab testing prototypes. Credit: Mark Moldwin For additional details, see the entry for this project on NASA TechPort .
      Project Lead: Prof. Mark Moldwin, University of Michigan
      Sponsoring Organization: NASA Heliophysics Division’s Heliophysics Technology and Instrument Development for Science (H-TIDeS) program.
      Share








      Details
      Last Updated Jun 17, 2025 Related Terms
      Technology Highlights Heliophysics Science Mission Directorate Science-enabling Technology Explore More
      2 min read Hubble Studies a Spiral’s Supernova Scene


      Article


      4 days ago
      5 min read NASA Launching Rockets Into Radio-Disrupting Clouds


      Article


      5 days ago
      2 min read Hubble Captures Starry Spectacle


      Article


      2 weeks ago
      View the full article
    • By NASA
      Heading into a recent staff meeting for Johnson Space Center’s Business Development & Technology Integration Office, Jason Foster anticipated a typical agenda of team updates and discussion. He did not expect an announcement that he had been named a 2025 Rookie of the Year – Honorable Mention through the Federal Laboratory Consortium’s annual awards program.

      Foster was one of only three technology transfer professionals across the federal government to be recognized in the Rookie of the Year category, which is open to early-career individuals with less than three years of experience. “It was definitely a surprise,” he said. “It was quite an honor, because it’s not only representing Johnson Space Center but also NASA.”

      Jason Foster recognized at the Federal Laboratory Consortium Award Ceremony as a Rookie of the Year – Honorable Mention.Image courtesy of Jason Foster Foster is a licensing specialist and New Technology Report (NTR) specialist within Johnson’s Technology Transfer Office in Houston. That team works to ensure that innovations developed for aeronautics and space exploration are made broadly available to the public, maximizing their benefit to the nation. Foster’s role involves both capturing new technologies developed at Johnson and marketing and licensing those technologies to companies that would like to use and further develop them.

      He describes much of his work as “technology hunting” – reaching out to branches, offices, and teams across Johnson to teach them about the Technology Transfer Office, NTRs, and the value of technology reporting for NASA and the public. “NTRs are the foundation that allows our office to do our job,” he said. “We need to know about a technology in order to transfer it.”

      Jason Foster (left) visited NASA’s White Sands Test Facility in Las Cruces, New Mexico, with his colleague Edgar Castillo as part of the Technology Transfer Office’s work to capture new technology and innovations developed at Johnson and affiliated facilities. Image courtesy of Jason Foster Foster’s efforts to streamline and strengthen the reporting and patenting of Johnson’s innovations led to his recognition by the consortium. His proactive outreach and relationship-building improved customer service and contributed to 158 NTRs in fiscal year 2024 – the highest number of NTRs disclosed by federal employees at any NASA center. Foster also proposed a three-month NTR sprint, during which he led a team of seven in an intensive exercise to identify and report new technologies. This initiative not only cleared a backlog of leads for the office, but also resulted in more than 120 previously undisclosed NTRs. “We are still using that process now as we continue processing NTRs,” Foster said. On top of those achievements, he helped secure the highest recorded number of license agreements with commercial entities in the center’s history, with 41 licenses executed in fiscal year 2024.

      “I am very proud of my accomplishments, none of it would be possible without the open-mindedness and continuous support of my incredible team,” Foster said. “They have always provided a space to grow, and actively welcome innovation in our processes and workflows.”

      Jason Foster educated Johnson employees about the Technology Transfer Office and the importance of submitting New Technology Reports during the center’s annual Innovation Showcase.Image courtesy of Jason Foster A self-described “space nerd,” Foster said he always envisioned working at NASA, but not until much later in his career – ideally as an astronaut. He initially planned to pursue an astrophysics degree but discovered a passion for engineering and fused that with his love of space by studying aerospace, aeronautical, and astronautical engineering instead. In his last semester of college at California Polytechnic State University of San Luis Obispo, he landed a Universities Space Research Association internship at Johnson, supporting flight software development for crew exercise systems on the International Space Station and future exploration missions. “I got really involved in the Johnson Space Center team and the work, and I thought, what if I joined NASA now?”

      He was hired as a licensing specialist on the Technology Transfer team under the JETS II Contract as an Amentum employee shortly after graduating and continually seeks new opportunities to expand his role and skillsets. “The more I can learn about anything NASA’s doing is incredible,” he said. “I found myself in this perfect position where literally my job is to learn everything there is to learn.”

      Jason Foster holding up Aerogel during his visit to the Hypervelocity Impact Testing Laboratory at NASA’s White Sands Test Facility in Las Cruces, New Mexico. The visit was part of the Technology Transfer Office’s work to capture new technology and innovations developed at Johnson and affiliated facilities. Image courtesy of Jason Foster Foster celebrates three years with NASA this July. In his time at the agency, he has learned the value of getting to know and understand your colleagues’ needs in order to help them. Before he meets with someone, he takes time to learn about the organization or team they are a part of, the work they are involved in, and what they might discuss. It is also important to determine how each person prefers to communicate and collaborate. “Doing your homework pays dividends,” Foster said. He has found that being as prepared as possible opens doors to more opportunities, and it helps to save valuable time for busy team members.

      Jason Foster practices fire spinning on a California beach. Image courtesy of Jason Foster When he is not technology hunting, you might find Foster practicing the art of fire spinning. He picked up the hobby in college, joining a club that met at local beaches to practice spinning and capturing different geometric patterns through long exposure photos. “It was kind of a strange thing to get into, but it was really fun,” he said. His love of learning drives his interest in other activities as well. Gardening is a relatively new hobby inspired by a realization that he had never grown anything before.   

      “It’s a genuine joy, I think, coming across something with curiosity and wanting to learn from it,” he said. “I think it especially helps in my job, where your curiosity switch has to be on at least 90% of the time.”

      Explore More
      4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts 
      Article 6 days ago 4 min read Johnson’s Paige Whittington Builds a Symphony of Simulations
      Article 3 weeks ago 9 min read Station Nation: Meet Megan Harvey, Utilization Flight Lead and Capsule Communicator 
      Article 4 weeks ago View the full article
    • By Space Force
      The Air Force Aid Society, AFAS, announced a series of bold changes aimed at better supporting the evolving needs of Airmen, Guardians, and their families.
      View the full article
  • Check out these Videos

×
×
  • Create New...