Jump to content

Recommended Posts

  • Publishers
Posted
3 Min Read

March’s Night Sky Notes: Messier Madness

A spiral galaxy is viewed sideways, with the glowing core closer to the upper left of the image. It is surrounded by spiral arms laced through with dark dust and bright regions of star formation.
Showing a large portion of M66, this Hubble photo is a composite of images obtained at visible and infrared wavelengths. The images have been combined to represent the real colors of the galaxy.
Credits:
NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; Acknowledgment: Davide De Martin and Robert Gendler

by Kat Troche of the Astronomical Society of the Pacific

What Are Messier Objects?

During the 18th century, astronomer and comet hunter Charles Messier wanted to distinguish the ‘faint fuzzies’ he observed from any potential new comets. As a result, Messier cataloged 110 objects in the night sky, ranging from star clusters to galaxies to nebulae. These items are designated by the letter ‘M’ and a number. For example, the Orion Nebula is Messier 42 or M42, and the Pleiades are Messier 45 or M45. These are among the brightest ‘faint fuzzies’ we can see with modest backyard telescopes and some even with our eyes.

Stargazers can catalog these items on evenings closest to the new moon. Some even go as far as having “Messier Marathons,” setting up their telescopes and binoculars in the darkest skies available to them, from sundown to sunrise, to catch as many as possible. Here are some items to look for this season:

A star map featuring the Leo and Cancer constellations with the Beehive Cluster (M44) in Cancer and the Leo Triplet (M65, M66, and NGC 3628) labeled. The bright stars Regulus and Procyon are also labeled nearby.
M44 in Cancer and M65 and 66 in Leo can be seen high in the evening sky 60 minutes after sunset.
Stellarium Web

Messier 44 in Cancer: The Beehive Cluster, also known as Praesepe, is an open star cluster in the heart of the Cancer constellation. Use Pollux in Gemini and Regulus in Leo as guide stars. A pair of binoculars is enough to view this and other open star clusters. If you have a telescope handy, pay a visit two of the three galaxies that form the Leo Triplet – M65 and M66. These items can be seen one hour after sunset in dark skies.

A star chart displaying the Bootes and Coma Berenices constellations. Messier 3 (M3), a globular cluster, is marked near Bootes. Messier 87 (M87), a giant elliptical galaxy, is located in the Virgo Cluster near Coma Berenices. The stars Alkaid, Alphecca, Arcturus and Denebola are also labeled.
Locate M3 and M87 rising in the east after midnight.
Stellarium Web

Messier 3 Canes Venatici: M3 is a globular cluster of 500,000 stars. Through a telescope, this object looks like a fuzzy sparkly ball. You can resolve this cluster in an 8-inch telescope in moderate dark skies. You can find this star cluster by using the star Arcturus in the Boötes constellation as a guide.

Messier 87 in Virgo: Located just outside of Markarian’s Chain, M87 is an elliptical galaxy that can be spotted during the late evening hours. While it is not possible to view the supermassive black hole at the core of this galaxy, you can see M87 and several other Messier-labeled galaxies in the Virgo Cluster using a medium-sized telescope.

A star chart showing the Cassiopeia constellation along with the Andromeda Galaxy (M31) and the Little Dumbbell Nebula (M76). The bright stars Shedar, Caph, and Ruchbah outline Cassiopeia. M31 is marked as an elongated feature in Andromeda, while M76 appears near Cassiopeia. The stars Almach and Mirach are labeled.
Locate M76 and M31 setting in the west, 60 minutes after sunset.
Stellarium Web

Plan Ahead

When gearing up for a long stargazing session, there are several things to remember, such as equipment, location, and provisions:

  • Do you have enough layers to be outdoors for several hours? You would be surprised how cold it can get when sitting or standing still behind a telescope!
  • Are your batteries fully charged? If your telescope runs on power, be sure to charge everything before you leave home and pack any additional batteries for your cell phone. Most people use their mobile devices for astronomy apps, so their batteries may deplete faster. Cold weather can also impact battery life.
  • Determine the apparent magnitude of what you are trying to see and the limiting magnitude of your night sky. You can learn more about apparent and limiting magnitudes with our Check Your Sky Quality with Orion article.
  • When choosing a location to observe from, select an area you are familiar with and bring some friends! You can also connect with your local astronomy club to see if they are hosting any Messier Marathons. It’s always great to share the stars!

You can see all 110 items and their locations with NASA’s Explore the Night Sky interactive map and the Hubble Messier Catalog, objects that have been imaged by the Hubble Space Telescope.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Kim Shiflett NASA astronauts Christina Koch, Artemis II mission specialist, and Victor Glover, Artemis II pilot, walk on the crew access arm of the mobile launcher in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Tuesday, Aug. 12, 2025.
      On Aug. 11 and 12, teams with the agency’s Exploration Ground Systems Program along with NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, practiced launch day operations if launch occurs at night. They simulated putting their spacesuits on and driving to the launch pad as well as emergency procedures they would use in the unlikely event of an emergency during the launch countdown requiring them to evacuate the launch pad.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars.
      Image credit: NASA/Kim Shiflett
      View the full article
    • By NASA
      1 min read
      NASA’s Black Marble: Stories from the Night Sky
      Earth (ESD) Earth Explore Explore Earth Home Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us Viewed from space, Earth at night tells endless stories. Using satellite data, we can track population growth, natural disaster damage, cultural celebrations, and even space weather. Studying these glowing patterns helps us understand human activity, respond to disasters, and witness a changing world.

      Original Video and Assets

      Share








      Details
      Last Updated Aug 04, 2025 Related Terms
      Earth Video Series Explore More
      4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play


      Article


      3 days ago
      6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield


      Article


      3 weeks ago
      2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.


      Earth Multimedia & Galleries


      View the full article
    • By NASA
      As the Sun approaches the most active part of its eleven-year magnetic cycle this summer, NASA volunteers have been watching it closely. Now they’ve spotted a new trend in solar behavior that will have you reaching for your suntan lotion. It’s all about something called a “Type II” solar radio burst:
      “Type II solar radio bursts are not commonly detected in the frequency range between 15 to 30 megahertz,” said Prof. Chuck Higgins, Co-founder of Radio JOVE. “Recently, we’re seeing many of them in that range.”
      Let’s unpack that. Our Sun often sprays powerful blasts of radio waves into space. Heliophysicists classify these radio bursts into five different types depending on how the frequency of the radio waves drifts over time. “Type II” solar radio bursts seem to come from solar flares and enormous squirts of hot plasma called coronal mass ejections.
      Now, Thomas Freeman, an undergraduate student at Middle Tennessee State University, and other volunteers working on NASA’s Radio JOVE project have observed something interesting about these Type II bursts: they are now showing up at lower frequencies—somewhere in between FM and AM radio. 
      What does it mean? It means our star is full of surprises! These Radio JOVE observations of the Sun’s radio emissions during solar maximum can be used to extend our knowledge of solar emissions to lower frequencies and, therefore, to distances farther from the Sun. 
      Radio JOVE is a NASA partner citizen science project in which participants assemble and operate radio astronomy telescopes to gather and contribute data to support scientific studies.  Radio JOVE collaborated with SunRISE Ground Radio Lab,  organized teams of high school students to observe the Sun, and recently published a paper on these Type II solar radio bursts. Learn more and get involved!  
      A Type II solar radio burst on April 23rd, 2024, seen as the gently sloping yellow band drifting from 17:49 to 18:02 UTC in the 15-30 MHz radio frequency-time spectrogram. Credit: Tom Ashcraft, Lamy, NM Share








      Details
      Last Updated Jul 23, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      2 min read Bring NASA Science into Your Library!


      Article


      2 days ago
      4 min read NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator
      July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or…


      Article


      6 days ago
      6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield


      Article


      7 days ago
      View the full article
    • By Amazing Space
      Solar Storm Latest - What Happened Last Night? July 7th
    • By NASA
      5 min read
      How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s SPHEREx mission will map the entire sky in 102 different wavelengths, or colors, of infrared light. This image of the Vela Molecular Ridge was captured by SPHEREx and is part of the mission’s first ever public data release. The yellow patch on the right side of the image is a cloud of interstellar gas and dust that glows in some infrared colors due to radiation from nearby stars. NASA/JPL-Caltech NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky map of the universe. Now settled into low-Earth orbit, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) has begun delivering its sky survey data to a public archive on a weekly basis, allowing anyone to use the data to probe the secrets of the cosmos.
      “Because we’re looking at everything in the whole sky, almost every area of astronomy can be addressed by SPHEREx data,” said Rachel Akeson, the lead for the SPHEREx Science Data Center at IPAC. IPAC is a science and data center for astrophysics and planetary science at Caltech in Pasadena, California.
      Almost every area of astronomy can be addressed by SPHEREx data.
      Rachel Akeson
      SPHEREx Science Data Center Lead
      Other missions, like NASA’s now-retired WISE (Wide-field Infrared Survey Explorer), have also mapped the entire sky. SPHEREx builds on this legacy by observing in 102 infrared wavelengths, compared to WISE’s four wavelength bands.
      By putting the many wavelength bands of SPHEREx data together, scientists can identify the signatures of specific molecules with a technique known as spectroscopy. The mission’s science team will use this method to study the distribution of frozen water and organic molecules — the “building blocks of life” — in the Milky Way.
      This animation shows how NASA’s SPHEREx observatory will map the entire sky — a process it will complete four times over its two-year mission. The telescope will observe every point in the sky in 102 different infrared wavelengths, more than any other all-sky survey. SPHEREx’s openly available data will enable a wide variety of astronomical studies. Credit: NASA/JPL-Caltech The SPHEREx science team will also use the mission’s data to study the physics that drove the universe’s expansion following the big bang, and to measure the amount of light emitted by all the galaxies in the universe over time. Releasing SPHEREx data in a public archive encourages far more astronomical studies than the team could do on their own.
      “By making the data public, we enable the whole astronomy community to use SPHEREx data to work on all these other areas of science,” Akeson said.
      NASA is committed to the sharing of scientific data, promoting transparency and efficiency in scientific research. In line with this commitment, data from SPHEREx appears in the public archive within 60 days after the telescope collects each observation. The short delay allows the SPHEREx team to process the raw data to remove or flag artifacts, account for detector effects, and align the images to the correct astronomical coordinates.
      The team publishes the procedures they used to process the data alongside the actual data products. “We want enough information in those files that people can do their own research,” Akeson said.
      One of the early test images captured by NASA’s SPHEREx mission in April 2025. This image shows a section of sky in one infrared wavelength, or color, that is invisible to the human eye but is represented here in a visible color. This particular wavelength (3.29 microns) reveals a cloud of dust made of a molecule similar to soot or smoke. NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), once again represented by a color that is visible to the human eye. The dust cloud has vanished because the molecules that make up the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color. NASA/JPL-Caltech




      During its two-year prime mission, SPHEREx will survey the entire sky twice a year, creating four all-sky maps. After the mission reaches the one-year mark, the team plans to release a map of the whole sky at all 102 wavelengths.
      In addition to the science enabled by SPHEREx itself, the telescope unlocks an even greater range of astronomical studies when paired with other missions. Data from SPHEREx can be used to identify interesting targets for further study by NASA’s James Webb Space Telescope, refine exoplanet parameters collected from NASA’s TESS (Transiting Exoplanet Survey Satellite), and study the properties of dark matter and dark energy along with ESA’s (European Space Agency’s) Euclid mission and NASA’s upcoming Nancy Grace Roman Space Telescope.
      The SPHEREx mission’s all-sky survey will complement data from other NASA space telescopes. SPHEREx is illustrated second from the right. The other telescope illustrations are, from left to right: the Hubble Space Telescope, the retired Spitzer Space Telescope, the retired WISE/NEOWISE mission, the James Webb Space Telescope, and the upcoming Nancy Grace Roman Space Telescope. NASA/JPL-Caltech The IPAC archive that hosts SPHEREx data, IRSA (NASA/IPAC Infrared Science Archive), also hosts pointed observations and all-sky maps at a variety of wavelengths from previous missions. The large amount of data available through IRSA gives users a comprehensive view of the astronomical objects they want to study.
      “SPHEREx is part of the entire legacy of NASA space surveys,” said IRSA Science Lead Vandana Desai. “People are going to use the data in all kinds of ways that we can’t imagine.”
      NASA’s Office of the Chief Science Data Officer leads open science efforts for the agency. Public sharing of scientific data, tools, research, and software maximizes the impact of NASA’s science missions. To learn more about NASA’s commitment to transparency and reproducibility of scientific research, visit science.nasa.gov/open-science. To get more stories about the impact of NASA’s science data delivered directly to your inbox, sign up for the NASA Open Science newsletter.
      By Lauren Leese
      Web Content Strategist for the Office of the Chief Science Data Officer 
      More About SPHEREx
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      To learn more about SPHEREx, visit:
      https://nasa.gov/SPHEREx
      Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Amanda Adams
      Office of the Chief Science Data Officer
      256-683-6661
      amanda.m.adams@nasa.gov
      Share








      Details
      Last Updated Jul 02, 2025 Related Terms
      Open Science Astrophysics Galaxies Jet Propulsion Laboratory SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) The Search for Life The Universe Explore More
      3 min read Discovery Alert: Flaring Star, Toasted Planet


      Article


      4 hours ago
      11 min read 3 Years of Science: 10 Cosmic Surprises from NASA’s Webb Telescope


      Article


      5 hours ago
      7 min read A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...