Jump to content

Recommended Posts

  • Publishers
Posted
4 Min Read

Lagniappe for March 2025

new production RS-25 engine arriving at the Fred Haise Test Stand
<a>Explore the March 2025 issue, highlighting the installation of the new production RS-25 engine at NASA Stennis, and more!</a>

Explore Lagniappe for March 2025 featuring:

  • NASA Stennis Teams Install New Production RS-25 Engine for Upcoming Hot Fire
  • NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel
  • NASA in NOLA for Super Bowl

Gator Speaks

Gator, a fictional character, for the Lagniappe for March 2025 issue is seen on a background of clover
Gator Speaks
NASA/Stennis

Welcome to March. It is the month that refuses to sit still. One day, the sun is shining, and the next day, the wind is howling through the trees, especially in the 125,000-acre buffer zone at NASA Stennis.

The buffer zone and location of NASA Stennis helps provide the right conditions for around-the-clock propulsion test capabilities.

March, like NASA Stennis, is full of possibilities.

The month kicks off a season of new beginnings. It is a time when farmers begin to plant seeds.

Did you know powering space dreams at NASA Stennis is a lot like farmers planting seeds?

Planting a seed is simple, yet profound. It signals a fresh start no matter if you are an experienced planter or if it is your first time.

Picking the right seed, carefully choosing the spot, and preparing the soil are ways to get going. Anticipation begins in March as planters set the stage for something that will happen over time.

Similarly, NASA Stennis is the right place to pick for many aerospace companies large and small. It is where the road to launch begins.

Whether the company is brand new to the field, like a first-time planter, or more experienced, the soil is right at NASA Stennis. South Mississippi is where a team of experts can help companies achieve a successful outcome.

Ah yes, the month of March and NASA Stennis are indeed alike.

They both can be a bridge between what was and what is to come – one, a time of year and the other, a place to shake off the winter slumber, take a deep breath, and step into something new.

There is something magical about planting seeds, just like there is something magical about powering space dreams at NASA Stennis.

NASA Stennis Top News

NASA Stennis Teams Install New Production RS-25 Engine for Upcoming Hot Fire

NASA marked a key milestone Feb. 18 with installation of RS-25 engine No. E20001, the first new production engine to help power the SLS (Space Launch System) rocket on future Artemis missions to the Moon.

NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel

NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is widely known as the nation’s largest rocket propulsion test site.

Center Activities

NASA in NOLA for Super Bowl

NASA Stennis Leaders Visit Kennedy Space Center

Leadership Class Visits NASA Stennis

a group of people from the Pearl River County Leadership stand in front of the the Thad Cochran Test Stand
The Pearl River County Leadership Class visits the Thad Cochran Test Stand (B-1/B-2) during a NASA Stennis tour on Feb. 20. NASA Stennis is at the front end of the critical path for the future of human deep space exploration through NASA’s Artemis campaign. The B-2 side of the Thad Cochran Test Stand is undergoing preparations for exploration upper stage testing. The upper stage is scheduled to undergo Green Run tests of its integrated systems before its first flight on the Artemis IV mission. The test series will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission.
NASA/Danny Nowlin

Rocket Lab Leader Visits NASA Stennis

NASA Stennis Director John Bailey, left, stands with Richard French, Rocket Lab USA, Inc. vice president of business development and strategy of space systems
NASA Stennis Director John Bailey, left, welcomes Richard French, Rocket Lab USA, Inc. vice president of business development and strategy of space systems, for a tour of NASA Stennis on Feb. 26. In 2022, NASA and Rocket Lab reached an agreement for the aerospace company to locate its engine test complex at NASA Stennis. The initial 10-year agreement between NASA and Rocket Lab includes an option to extend an additional 10 years. The Archimedes Test Complex includes 24 acres surrounding the site’s A-3 Test Stand. Archimedes is Rocket Lab’s liquid oxygen and liquid methane rocket engine to power its medium-lift Neutron rocket. The company successfully completed the first hot fire of the new Archimedes rocket engine at NASA Stennis in August 2024.
NASA/Danny Nowlin

NASA in the News

Employee Profile: Jason Hopper

a man wearing a blue and white striped shirt stand on the E Test Complex stairs
NASA’s Jason Hopper is shown at the E Test Complex at NASA’s Stennis Space Center.
NASA/Danny Nowlin

Jason Hopper’s journey to NASA started with assessing the risk of stepping into the unknown.

Additional Resources

Subscription Info

Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail).

The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin.

To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Prelaunch News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By European Space Agency
      Week in images: 08-12 September 2025
      Discover our week through the lens
      View the full article
    • By NASA
      NSTGRO Homepage
      Andrew Arends
      University of California, Davis
      Astronaut-Powered Laundry Machine
      Allan Attia
      Stanford University
      Computational Modeling of Lithium Magnetoplasmadynamic Thruster for Nuclear Electric Propulsion
      Michael Auth
      University of California, Santa Barbara
      Non-Contact, Real-Time Diagnostics of Battery Aging in 18650 Cells During the Lunar Night Using Acoustic Spectroscopy
      Nicholas Brennan
      Cornell University
      Spin Wave-Based Neuromorphic Coprocessor for Advanced AI Applications
      John Carter
      Purdue University
      Spectroscopic Measurements and Kinetic Modeling of Non-Boltzmann CN for Entry Systems Modeling
      Thomas Clark
      University of Colorado, Boulder
      Data-Driven Representations of Trajectories in Cislunar Space
      Nicholas Cmkovich
      University of Wisconsin-Madison
      Development of Radiation Tolerant Additively Manufactured Refractory Compositionally Complex Alloys
      Kara Hardy
      Michigan Technological University
      Design and Optimization of Cuttlebone-Inspired Cellular Materials Using Turing Systems
      Tyler Heggenes
      Utah State University
      Mitigating Spacecraft Charging Issues Through High-Precision, Temperature-Dependent Measurements of Dynamic Radiation Induced Conductivity
      Joseph Hesse-Withbroe
      University of Colorado, Boulder
      Decreasing Astronaut Radiation Doses with Magnetic Shields
      Niya Hope-Glenn
      Massachusetts Institute of Technology
      Investigating the Selectivity of CO2 Hydrogenation to Ethylene in a Plasma Reactor for Mars ISRU
      Adrianna Hudyma
      University of Minnesota
      Biorthogonal Translation System for Production of Pharmaceuticals During Space Missions
      Tushaar Jain
      Carnegie Mellon University
      Towards On-Demand Planetary Landing Through On-Board Autonomous Mapping and Cross-Modality Map Relative Localization
      Devin Johnson
      Purdue University
      Numerical and Experimental Methodology to Optimize Propellant Injection, Mixing, and Response in Rotating Detonation Engines
      Jack Joshi
      University of Texas at Austin
      State Representations for Measurement Fusion and Uncertainty Propagation in Cislunar Regime
      John Knoll
      William Marsh Rice University
      Dexterous Manipulation via Vision-Intent-Action Models
      Joseph Ligresti
      Purdue University
      Effects of Vacuum Conditions on FORP Reactivity and Long-Term Viability of MON-25/MMH Thrusters
      Alexander Madison
      University of Central Florida
      Hybrid Microwave Sintering of Lunar Regolith with 2.45GHz and 18-28GHz
      Aurelia Moriyama-Gurish
      Yale University
      Investigating Fundamental High Strain Rate Deformation Mechanisms to Bridge the Experiment-Computation Gap and Local Thermal Shock Response in C103
      Sophia Nowak
      University of Wisconsin-Madison
      Pulsed Laser System for Calibration of High Resolution X-ray Microcalorimeters
      Jacob Ortega
      Missouri University of Science and Technology
      Forging the Future Lunar Settlement with In-Situ Aluminum Extraction
      John Riley O’Toole
      University of Michigan
      Laser-Based Measurements of Electron Properties in Hall Effect Thrusters with Non-Conventional Propellants Enabling for Cis-Lunar, Mars, and Deep Space Missions
      Cort Reinarz
      Texas A&M University
      Utilizing Biometrics in Closed-Loop Compression Garment Systems as a Countermeasure for Orthostatic Intolerance
      Erica Sawczynec
      University of Texas at Austin
      A Monolithic Cross-Dispersed Grism for Near-Infrared Spectroscopy
      Ingrid Shan
      California Institute of Technology
      Micro-Architected Metallic Lattices for Lunar Dust Mitigation
      Pascal Spino
      Massachusetts Institute of Technology
      Centimeter-Scale Robots for Accessing Europa’s Benthic Zone
      Benjamin Stern
      Northwestern University, Chicago
      A Near-Field Thermoreflectance Approach for Nanoscale Thermal Mapping on Nanostructured Sige
      Titus Szobody
      William Marsh Rice University
      Leveraging Polymeric Photochemistry in Ionic Liquid-Based Mirror Synthesis for Space Telescope Optics
      Seneca Velling
      California Institute of Technology
      Constraining Weathering Kinetics Under Experimentally Simulated Venus Conditions
      Zhuochen Wang
      Georgia Institute of Technology
      Optimal Covariance Steering on Lie Groups for Precision Powered Descent
      Stanley Wang
      Stanford University
      Compact Robots with Long Reach for Space Exploration and Maintenance Tasks
      Thomas Westenhofer
      University of California, Irvine
      Kinetic Modeling of Carbon Mass Loss in Nuclear Thermal Propulsion
      Andrew Witty
      Purdue University
      Scalable Nanoporous Paints with High Solar Reflectance and Durability in Space Environments
      Jonathan Wrieden
      University of Maryland, College Park
      A Stochastic Model for Predicting Charged Orbital Debris Probability Densities by Utilizing Earth’s Electromagnetic Field to Guide Active Debris Remediation Efforts
      Jasen Zion
      California Institute of Technology
      Large-Format, Fast SNSPD Cameras Benchmarked with Neutral Atom Arrays
      Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Space Technology Research Grants
      NASA Space Technology Graduate Research Opportunities (NSTGRO)
      Technology
      Share
      Details
      Last Updated Sep 12, 2025 EditorLoura Hall Related Terms
      Space Technology Research Grants Space Technology Mission Directorate View the full article
    • By NASA
      Ames Science Directorate’s Stars of the Month: September 2025

      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Earth Science Star: Taejin Park
      Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
      Space Science and Astrobiology Star: Lydia Schweitzer
      Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
      Space Science and Astrobiology Star: Rachel Morgan
      Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
      View the full article
  • Check out these Videos

×
×
  • Create New...