Jump to content

NASA Astronauts to Answer Questions from Students in Ohio, Texas


Recommended Posts

  • Publishers
Posted
Four astronauts in blue, green, and black shirts float in the space station, smiling for the camera.
NASA’s Space X Crew-9 members pose together for a portrait.
Credit: NASA

Students from Ohio and Texas will have the chance to hear NASA astronauts aboard the International Space Station answer their prerecorded questions this week.

At 12:55 p.m. EST, Wednesday, March 5, NASA astronauts Suni Williams, Nick Hague, Butch Wilmore, and Don Pettit will respond to questions submitted by students from Puede Network, in partnership with The Achievery in Dallas.

At 10:30 a.m., Thursday, March 6, a separate call with NASA astronauts Williams, Hague, and Wilmore, will answer questions posed by students at Saint Ambrose Catholic School in Brunswick, Ohio.

Watch the 20-minute space-to-Earth calls on NASA+. Learn how to watch NASA content on various platforms, including social media.

The Puede Network, a Dallas-based youth organization, is collaborating with the Achievery, an online platform for connecting students with digital learning opportunities. Media interested in covering the event must RSVP by 5 p.m. Tuesday, March 4 to Rodrigo Oshiro at: rodrigo@happytogether.studio or +54 9 113068 7121.

Saint Ambrose Catholic School, part of Saint Ambrose Catholic Church, is a preschool through 8th grade school focused on science, technology, engineering, arts, and mathematics. Media interested in covering the event must RVSP by 5 p.m., Wednesday, March 5 to Breanne Logue at: BLogue@StASchool.us or 330-460-7318.

For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.

Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.

See videos and lesson plans highlighting space station research at:

https://www.nasa.gov/stemonstation

-end-

Abbey Donaldson
Headquarters, Washington
202-358-1600
abbey.a.donaldson@nasa.gov

Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

Share

Details

Last Updated
Mar 03, 2025
Editor
Jessica Taveau

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Prelaunch News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      6 min read
      NASA’s IMAP Mission to Study Boundaries of Our Home in Space
      Summary
      NASA’s new Interstellar Mapping and Acceleration Probe, or IMAP, will launch no earlier than Tuesday, Sept. 23 to study the heliosphere, a giant shield created by the Sun. The mission will chart the heliosphere’s boundaries to help us better understand the protection it offers life on Earth and how it changes with the Sun’s activity. The IMAP mission will also provide near real-time measurements of the solar wind, data that can be used to improve models predicting the impacts of space weather ranging from power-line disruptions to loss of satellites, to the health of voyaging astronauts. Space is a dangerous place — one that NASA continues to explore for the benefit of all. It’s filled with radiation and high-energy particles that can damage DNA and circuit boards alike. Yet life endures in our solar system in part because of the heliosphere, a giant bubble created by the Sun that extends far beyond Neptune’s orbit.
      With NASA’s new Interstellar Mapping and Acceleration Probe, or IMAP, launching no earlier than Tuesday, Sept. 23, humanity is set to get a better look at the heliosphere than ever before. The mission will chart the boundaries of the heliosphere to help us better understand the protection it offers and how it changes with the Sun’s activity. The IMAP mission will also provide near real-time measurements of space weather conditions essential for the Artemis campaign and deep space travel. 
      “With IMAP, we’ll push forward the boundaries of knowledge and understanding of our place not only in the solar system, but our place in the galaxy as a whole,” said Patrick Koehn, IMAP program scientist at NASA Headquarters in Washington. “As humanity expands and explores beyond Earth, missions like IMAP will add new pieces of the space weather puzzle that fills the space between Parker Solar Probe at the Sun and the Voyagers beyond the heliopause.”
      Download this video from NASA’s Scientific Visualization Studio.
      Domain of Sun
      The heliosphere is created by the constant outflow of material and magnetic fields from the Sun called the solar wind. As the solar system moves through the Milky Way, the solar wind’s interaction with interstellar material carves out the bubble of the heliosphere. Studying the heliosphere helps scientists understand our home in space and how it came to be habitable.
      As a modern-day celestial cartographer, IMAP will map the boundary of our heliosphere and study how the heliosphere interacts with the local galactic neighborhood beyond. It will chart the vast range of particles, dust, ultraviolet light, and magnetic fields in interplanetary space, to investigate the energization of charged particles from the Sun and their interaction with interstellar space.
      The IMAP mission builds on NASA’s Voyager and IBEX (Interstellar Boundary Explorer) missions. In 2012 and 2018, the twin Voyager spacecraft became the first human-made objects to cross the heliosphere’s boundary and send back measurements from interstellar space. It gave scientists a snapshot of what the boundary looked like and where it was in two specific locations. While IBEX has been mapping the heliosphere, it has left many questions unanswered. With 30 times higher resolution and faster imaging, IMAP will help fill in the unknowns about the heliosphere.
      Energetic neutral atoms: atomic messengers from our heliosphere’s edge
      Of IMAP’s 10 instruments, three will investigate the boundaries of the heliosphere by collecting energetic neutral atoms, or ENAs. Many ENAs originate as positively charged particles released by the Sun but after racing across the solar system, these particles run into particles in interstellar space. In this collision, some of those positively charged particles become neutral, and an energetic neutral atom is born. The interaction also redirects the new ENAs, and some ricochet back toward the Sun.
      Charged particles are forced to follow magnetic field lines, but ENAs travel in a straight line, unaffected by the twists, turns, and turbulences in the magnetic fields that permeate space and shape the boundary of the heliosphere. This means scientists can track where these atomic messengers came from and study distant regions of space from afar. The IMAP mission will use the ENAs it collects near Earth to trace back their origins and construct maps of the boundaries of the heliosphere, which would otherwise be invisible from such a distance.
      “With its comprehensive state-of-the-art suite of instruments, IMAP will advance our understanding of two fundamental questions of how particles are energized and transported throughout the heliosphere and how the heliosphere itself interacts with our galaxy,” said Shri Kanekal, IMAP mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The IMAP mission will study the heliosphere, our home in space. NASA/Princeton University/Patrick McPike Space weather: monitoring solar wind
      The IMAP mission will also support near real-time observations of the solar wind and energetic solar particles, which can produce hazardous conditions in the space environment near Earth. From its location at Lagrange Point 1, about 1 million miles from Earth toward the Sun, IMAP will provide around a half hour’s warning of dangerous particles headed toward our planet. The mission’s data will help with the development of models that can predict the impacts of space weather ranging from power-line disruptions to loss of satellites.
      “The IMAP mission will provide very important information for deep space travel, where astronauts will be directly exposed to the dangers of the solar wind,” said David McComas, IMAP principal investigator at Princeton University.
      Cosmic dust: hints of the galaxy beyond
      In addition to measuring ENAs and solar wind particles, IMAP will also make direct measurements of interstellar dust — clumps of particles originating outside of the solar system that are smaller than a grain of sand. This space dust is largely composed of rocky or carbon-rich grains leftover from the aftermath of supernova explosions. 
      The specific elemental composition of this space dust is a postmark for where it comes from in the galaxy. Studying cosmic dust can provide insight into the compositions of stars from far outside our solar system. It will also help scientists significantly advance what we know about these basic cosmic building materials and provide information on what the material between stars is made of.
      David McComas leads the mission with an international team of 27 partner institutions. APL is managing the development phase and building the spacecraft, and it will operate the mission. IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio. The Explorers and Heliophysics Projects Division at NASA Goddard manages the STP Program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate. NASA’s Launch Services Program, based at NASA’s Kennedy Space Center in Florida, manages the launch service for the mission.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 17, 2025 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division IMAP (Interstellar Mapping and Acceleration Probe) Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Explore More
      4 min read NASA Interns Apply NASA data to Real-World Problems to Advance Space Research and Aerospace Innovation


      Article


      2 hours ago
      3 min read Regions on Asteroid Explored by NASA’s Lucy Mission Get Official Names
      The IAU (International Astronomical Union), a global naming authority for celestial objects, has approved official…


      Article


      1 day ago
      5 min read Connecting Educators with NASA Data: Learning Ecosystems Northeast in Action


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      From left to right, NASA’s Carruthers Geocorona Observatory, IMAP (Interstellar Mapping and Acceleration Probe), and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1) missions will map our Sun’s influence across the solar system in new ways. Credit: NASA NASA will provide live coverage of prelaunch and launch activities for an observatory designed to study space weather and explore and map the boundaries of our solar neighborhood.
      Launching with IMAP (Interstellar Mapping and Acceleration Probe) are two rideshare missions, NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On-Lagrange 1 (SWFO-L1), both of which will provide insight into space weather and its impacts at Earth and across the solar system.
      Liftoff of the missions on a SpaceX Falcon 9 rocket is targeted for 7:32 a.m. EDT, Tuesday, Sept. 23, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Watch coverage beginning at 6:40 a.m. on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      The IMAP spacecraft will study how the Sun’s energy and particles interact with the heliosphere — an enormous protective bubble of space around our solar system — to enhance our understanding of space weather, cosmic radiation, and their impacts on Earth and human and robotic space explorers. The spacecraft and its two rideshares will orbit approximately one million miles from Earth, positioned toward the Sun at a location known as Lagrange Point 1.
      NASA’s Carruthers Geocorona Observatory is a small satellite that will observe Earth’s outermost atmospheric layer, the exosphere. It will image the faint glow of ultraviolet light from this region, called the geocorona, to better understand how space weather impacts our planet. The Carruthers mission continues the legacy of the Apollo era, expanding on measurements first taken during Apollo 16.
      The SWFO-L1 spacecraft will monitor space weather and detect solar storms in advance, serving as an early warning beacon for potentially disruptive space weather, helping safeguard Earth’s critical infrastructure and technological-dependent industries. The SWFO-L1 spacecraft is the first NOAA observatory designed specifically for and fully dedicated to continuous, operational space weather observations.
      Media accreditation for in-person coverage of this launch has passed. NASA’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Sunday, Sept. 21
      2:30 p.m. – NASA Prelaunch News Conference on New Space Weather Missions
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Brad Williams, IMAP program executive, NASA Headquarters Irene Parker, deputy assistant administrator for Systems at NOAA’s National Environmental Satellite, Data, and Information Service Denton Gibson, launch director, NASA’s Launch Services Program, NASA Kennedy Julianna Scheiman, director, NASA Science Missions, SpaceX Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person or via phone. Limited auditorium space will be available for in-person participation for previously credentialed media. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
      3:45 p.m. – NASA, NOAA Science News Conference on New Space Weather Missions
      Joe Westlake, director, Heliophysics Division, NASA Headquarters David McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign Jamie Favors, director, Space Weather Program, Heliophysics Division, NASA Headquarters Clinton Wallace, director, NOAA Space Weather Prediction Center James Spann, senior scientist, NOAA Office of Space Weather Observations Watch the briefing on the agency’s website or NASA’s YouTube channel.
      Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the NASA Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov. Members of the public may ask questions on social media using the hashtag #AskNASA.
      Monday, Sept. 22
      11:30 a.m. – In-person media one-on-one interviews with the following:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Kieran Hegarty, IMAP project manager, Johns Hopkins University Applied Physics Lab Jamie Rankin, IMAP instrument lead for Solar Wind and Pickup Ion, Princeton University John Clarke, Carruthers deputy principal investigator, Boston University Dimitrios Vassiliadis, SWFO-L1 program scientist, NOAA Brent Gordon, deputy director, NOAA Space Weather Prediction Center Remote media may request a one-on-one video interview online by 3 p.m. on Thursday, Sept. 18.
      Tuesday, Sept. 23
      6:40 a.m. – Launch coverage begins on NASA+,  Amazon Prime and more. NASA’s Spanish launch coverage begins on NASA+, and the agency’s Spanish-language YouTube channel.
      7:32 a.m. – Launch
      Audio-Only Coverage
      Audio-only of the launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, or -1240. On launch day, “mission audio,” countdown activities without NASA+ media launch commentary, will be carried on 321-867-7135.
      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the agency’s website. Coverage will include links to live streaming and blog updates beginning no earlier than 6 a.m., Sept. 23, as the countdown milestones occur. Streaming video and photos of the launch will be accessible on demand shortly after liftoff. Follow countdown coverage on the IMAP blog.
      For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con María-José Viñas: maria-jose.vinasgarcia@nasa.gov.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media
      Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:


      X: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellies
      Facebook: NASA, NASA Kennedy, NASA Solar System, NOAA Satellites
      Instagram: @NASA, @NASAKennedy, @NASASolarSystem, @NOAASatellites
      For more information about these missions, visit:
      https://www.nasa.gov/sun
      -end-
      Abbey Interrante
      Headquarters, Washington
      301-201-0124
      abbey.a.interrante@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      Leejay Lockhart
      Kennedy Space Center, Fla.
      321-747-8310
      leejay.lockhart@nasa.gov
      John Jones-Bateman
      NOAA’s Satellite and Information Service, Silver Spring, Md.
      202-242-0929
      john.jones-bateman@noaa.gov
      Share
      Details
      Last Updated Sep 15, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Heliophysics Division Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Science Mission Directorate View the full article
    • By NASA
      One of the challenges many teachers face year after year is a sense of working alone. Despite the constant interaction with students many questions often linger: Did the lesson stick? Will students carry this knowledge with them? Will it shape how they see and engage with the world? What can be easy to overlook is that teaching does not happen in isolation. Each classroom, or any other educational setting, is part of a much larger journey that learners travel. This journey extends through a network of educators, where each experience can build on the last. These interconnected networks, known as Connected Learning Ecosystems (CLEs), exist wherever learning happens. At their core, CLEs are the collective of people who contribute to a young person’s growth and education over time.
      Educators at the August 2025 Connected Learning Ecosystems Gathering in Orono, ME engaged in discussion around using NASA data in their learning contexts. Recognizing this, NASA’s Science Activation Program launched the Learning Ecosystems Northeast (LENE) project to strengthen and connect regional educator networks across Maine and the broader Northeast. With a shared focus on Science, Technology, Engineering, and Mathematics (STEM), LENE brings together teachers, librarians, 4-H mentors, land trust educators, and many others committed to expanding scientific understanding, deepening data literacy, and preparing youth to navigate a changing planet. To support this work, LENE hosts biannual Connected Learning Ecosystem Gatherings. These multi-day events bring educators together to share progress, celebrate achievements, and plan future collaborations. More than networking, these gatherings reinforce the collective impact educators have, ensuring that their efforts resonate far beyond individual classrooms and enrich the lives of the learners they guide.
      “I am inspired by the GMRI staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of this the LENE community. This was a very well-run event! Thank you to all!” -anonymous


      This year’s Gathering took place August 12 and 13, 2025, in Orono, ME at the University of Maine (a LENE project partner). Nearly 70 educators from across the northeast came together for two amazingly energized days of connection, learning, and future planning. While each event is special, this summer’s Gathering was even more remarkable due to the fact that for, the first time, each workshop was led by an established LENE educator. Either by self-nomination or request from leadership (requiring little convincing), every learning experience shared over the conference days was guided by the thoughtful investigation and real life application of LENE Project Partners, CLE Lead Educators, and community collaborators.
      Brian Fitzgerald and Jackie Bellefontaine from the Mount Washington Observatory in New Hampshire, a LENE Project Partner, led the group through a hands-on activity using NASA data and local examples to observe extreme weather. Librarian Kara Reiman guided everyone through the creation and use of a newly established Severe Weather Disaster Prep Kit, including games and tools to manage climate anxiety. Katrina Heimbach, a long time CLE constituent from Western Maine taught how to interpret local data using a creative and fun weaving technique. Because of the established relationship between Learning Ecosystems Northeast and the University of Maine, attendees to the Gathering were able to experience a guided tour through the Advanced Structures and Composites Center and one of its creations, the BioHome3D – the world’s first 3D printed house made entirely with forest-derived, recyclable materials.
      Two full days of teachers leading teachers left the entire group feeling energized and encouraged, connected, and centered. The increased confidence in their practices gained by sustained support from their peers allowed these educators to step up and share – embodying the role of Subject Matter Expert. Seeing their colleagues take center stage makes it easier for other educators to envision themselves in similar roles and provides clear guidance on how to take those steps themselves. One educator shared their thoughts following the experience:
      “This was my first time attending the LENE conference, and I was immediately welcomed and made to feel ‘part of it all’. I made connections with many of the educators who were present, as well as the LENE staff and facilitators. I hope to connect with my new CLE mates in the near future!” Another participant reported, “I am inspired by the … staff and participants. I never expected to get to do climate resilience-related work in my current job as a children’s librarian. I am excited to do meaningful and impactful work with what I gain from being part of the LENE community. This was a very well-run event! Thank you to all!”
      Even with the backing of regional groups, many educators, especially those in rural communities, still struggle with a sense of isolation. The biannual gatherings play an important role in countering that, highlighting the fact that this work is unfolding across the state. Through Connected Learning Ecosystems, educators are able to build and reinforce networks that help close the gaps created by distance and geography.
      These Gatherings are part of ongoing programming organized by Learning Ecosystems Northeast, based at the Gulf of Maine Research Institute, that fosters peer communities across the Northeast, through which teachers, librarians, and out-of-school educators can collaborate to expand opportunities for youth to engage in data-driven investigations and integrate in- and out-of-school learning. Learn more about Learning Ecosystems Northeast’s efforts to empower the next generation of environmental stewards: https://www.learningecosystemsnortheast.org.
      The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/.
      Share








      Details
      Last Updated Sep 15, 2025 Related Terms
      Earth Science Science Activation Explore More
      13 min read The Earth Observer Editor’s Corner: July–September 2025


      Article


      5 days ago
      21 min read Summary of the 11th ABoVE Science Team Meeting


      Article


      5 days ago
      5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini


      Article


      3 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...