Members Can Post Anonymously On This Site
Going With the Flow: Visualizing Ocean Currents with ECCO
-
Similar Topics
-
By European Space Agency
After an extraordinary six-week voyage from northern Norway, the iconic Norwegian tall ship Statsraad Lehmkuhl has docked in Nice, France, concluding ESA’s 2025 Advanced Ocean Training course. Braving everything from wild storms to calm near-freezing seas, students aboard mastered techniques for collecting ocean measurements and harnessed satellite data to unlock insights into our blue planet.
Led by experts, this real-world expedition offered more than education – it sparked curiosity and a deeper commitment to understanding and protecting our oceans.
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Sunlight reflects off the ocean surface near Norfolk, Virginia, in this 1991 space shuttle image, highlighting swirling patterns created by features such as internal waves, which are produced when the tide moves over underwater features. Data from the international SWOT mission is revealing the role of smaller-scale waves and eddies.NASA The international mission collects two-dimensional views of smaller waves and currents that are bringing into focus the ocean’s role in supporting life on Earth.
Small things matter, at least when it comes to ocean features like waves and eddies. A recent NASA-led analysis using data from the SWOT (Surface Water and Ocean Topography) satellite found that ocean features as small as a mile across potentially have a larger impact on the movement of nutrients and heat in marine ecosystems than previously thought.
Too small to see well with previous satellites but too large to see in their entirety with ship-based instruments, these relatively small ocean features fall into a category known as the submesoscale. The SWOT satellite, a joint effort between NASA and the French space agency CNES (Centre National d’Études Spatiales), can observe these features and is demonstrating just how important they are, driving much of the vertical transport of things like nutrients, carbon, energy, and heat within the ocean. They also influence the exchange of gases and energy between the ocean and atmosphere.
“The role that submesoscale features play in ocean dynamics is what makes them important,” said Matthew Archer, an oceanographer at NASA’s Jet Propulsion Laboratory in Southern California. Some of these features are called out in the animation below, which was created using SWOT sea surface height data.
This animation shows small ocean features — including internal waves and eddies — derived from SWOT observations in the Indian, Atlantic, and Pacific oceans, as well as the Mediterranean Sea. White and lighter blue represent higher ocean surface heights compared to darker blue areas. The purple colors shown in one location represent ocean current speeds.
NASA’s Scientific Visualization Studio “Vertical currents move heat between the atmosphere and ocean, and in submesoscale eddies, can actually bring up heat from the deep ocean to the surface, warming the atmosphere,” added Archer, who is a coauthor on the submesoscale analysis published in April in the journal Nature. Vertical circulation can also bring up nutrients from the deep sea, supplying marine food webs in surface waters like a steady stream of food trucks supplying festivalgoers.
“Not only can we see the surface of the ocean at 10 times the resolution of before, we can also infer how water and materials are moving at depth,” said Nadya Vinogradova Shiffer, SWOT program scientist at NASA Headquarters in Washington.
Fundamental Force
Researchers have known about these smaller eddies, or circular currents, and waves for decades. From space, Apollo astronauts first spotted sunlight glinting off small-scale eddies about 50 years ago. And through the years, satellites have captured images of submesoscale ocean features, providing limited information such as their presence and size. Ship-based sensors or instruments dropped into the ocean have yielded a more detailed view of submesoscale features, but only for relatively small areas of the ocean and for short periods of time.
The SWOT satellite measures the height of water on nearly all of Earth’s surface, including the ocean and freshwater bodies, at least once every 21 days. The satellite gives researchers a multidimensional view of water levels, which they can use to calculate, for instance, the slope of a wave or eddy. This in turn yields information on the amount of pressure, or force, being applied to the water in the feature. From there, researchers can figure out how fast a current is moving, what’s driving it and —combined with other types of information — how much energy, heat, or nutrients those currents are transporting.
“Force is the fundamental quantity driving fluid motion,” said study coauthor Jinbo Wang, an oceanographer at Texas A&M University in College Station. Once that quantity is known, a researcher can better understand how the ocean interacts with the atmosphere, as well as how changes in one affect the other.
Prime Numbers
Not only was SWOT able to spot a submesoscale eddy in an offshoot of the Kuroshio Current — a major current in the western Pacific Ocean that flows past the southeast coast of Japan — but researchers were also able to estimate the speed of the vertical circulation within that eddy. When SWOT observed the feature, the vertical circulation was likely 20 to 45 feet (6 to 14 meters) per day.
This is a comparatively small amount for vertical transport. However, the ability to make those calculations for eddies around the world, made possible by SWOT, will improve researchers’ understanding of how much energy, heat, and nutrients move between surface waters and the deep sea.
Researchers can do similar calculations for such submesoscale features as an internal solitary wave — a wave driven by forces like the tide sloshing over an underwater plateau. The SWOT satellite spotted an internal wave in the Andaman Sea, located in the northeastern part of the Indian Ocean off Myanmar. Archer and colleagues calculated that the energy contained in that solitary wave was at least twice the amount of energy in a typical internal tide in that region.
This kind of information from SWOT helps researchers refine their models of ocean circulation. A lot of ocean models were trained to show large features, like eddies hundreds of miles across, said Lee Fu, SWOT project scientist at JPL and a study coauthor. “Now they have to learn to model these smaller scale features. That’s what SWOT data is helping with.”
Researchers have already started to incorporate SWOT ocean data into some models, including NASA’s ECCO (Estimating the Circulation and Climate of the Ocean). It may take some time until SWOT data is fully a part of models like ECCO. But once it is, the information will help researchers better understand how the ocean ecosystem will react to a changing world.
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. Managed for NASA by Caltech in Pasadena, California, JPL leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
To learn more about SWOT, visit:
https://swot.jpl.nasa.gov
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
626-491-1943 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2025-070
Share
Details
Last Updated May 15, 2025 Related Terms
SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Oceanography Oceans Explore More
6 min read NASA’s Magellan Mission Reveals Possible Tectonic Activity on Venus
Article 23 hours ago 6 min read NASA Studies Reveal Hidden Secrets About Interiors of Moon, Vesta
Article 1 day ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
Article 3 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
This S-3 supported vital flight research by donating parts to its sister plane, another S3-B Viking that was retired in 2021.Credit: NASA/Jordan Cochran After supporting the center’s research missions for more than a decade, NASA’s S-3B Viking aircraft is moving on from NASA’s Glenn Research Center in Cleveland to begin a new and honorable assignment.
The aircraft is heading to the National POW/MIA Memorial and Museum in Jacksonville, Florida, where it will be on display, honoring all Prisoners of War (POW), those Missing in Action (MIA), and the families who seek the return of their loved ones. The museum gives visitors a place of solace to reflect, learn, and hear stories about America’s POW and MIA service members through exhibits and events.
A team of volunteers, many of whom are veterans, converged to disassemble an S-3B Viking at NASA’s Glenn Research Center in Cleveland so it could be transported by truck to the National Pow/MIA Memorial and Museum in Jacksonville, Florida. Credit: NASA/Lillianne Hammel “We are honored to be part of it,” said JD Demers, chief of Aircraft Operations at NASA Glenn. “Moving the S-3 is a win-win for everybody. The museum gets an aircraft in beautiful shape, and our S-3 gets to continue living a meaningful life.”
Originally designed by Lockheed Martin as an anti-submarine warfare aircraft, NASA’s S-3B Viking will travel south to its new museum home, which is located at the former Naval Air Station Cecil Field where S-3B Vikings once flew. It will be displayed with a plaque recognizing the 54 service members who perished during S-3 flight missions.
NASA’s JD Demers poses with National POW/MIA Memorial and Museum’s Ed Turner in front of NASA’s S-3B Viking aircraft. Credit: NASA/Jordan Cochran “It’s really fortunate for us that this S-3 has such a well-kept, beautiful airframe that we can use as part of this plaza,” said Ed Turner, executive director of the National POW/MIA Memorial and Museum. “Cecil Field was the East Coast home for the S-3B Vikings, so we are proud to have it for display here as one of Cecil’s legacy aircraft.”
Behind the scenes, this S-3 supported vital NASA flight research by donating parts to its sister plane, another S3-B Viking that was retired in 2021. Through the donation of its parts, the S-3 contributed to communications research in advanced air mobility and monitoring of algal bloom growth in Lake Erie.
“Having this aircraft added an extra 10 years of life to its sister plane,” Demers said. “Those 10 years were vital for research. This plane allowed us to keep flying that aircraft after the Navy retired the S-3B Vikings in 2009. We wouldn’t have been able to find parts.”
NASA prepares its S-3B Viking for its journey to the National POW/MIA Memorial and Museum in Jacksonville, Florida.Credit: NASA/Sara Lowthian-Hanna The U.S. Navy flew S-3 Vikings primarily out of three locations: North Island Naval Air Station, Naval Air Station Cecil Field, and Naval Air Station Jacksonville. There were S-3B Vikings in all locations except Jacksonville, until now.
“There are three bases in three locations that used to fly S-3s, and now each area has an S-3 as part of its display,” Demers said. “It belongs there. It’s going back to its original home.”
Explore More
3 min read NASA Supports Wildland Fire Technology Demonstration
Article 2 weeks ago 4 min read NASA Makes Progress on Advanced Drone Safety Management System
Article 2 weeks ago 5 min read NASA History News and Notes–Spring 2025
Article 2 weeks ago View the full article
-
By USH
UVB-76, widely known by its nickname "The Buzzer," is a mysterious shortwave Russian radio station radio broadcasts in the world. It began broadcasting in the mid-1970s and is still active today, broadcasting cryptic signals at 4625 kHz.
This Russian shortwave station usual broadcast consists of a monotonous buzzing tone that occasionally breaks for cryptic voice messages in Russian. The station is widely believed to be operated by the Russian military, possibly as part of the Strategic Rocket Forces’ communication network.
The use of shortwave radio enables the signal to travel vast distances, potentially covering all of Russia and extending far beyond its borders.
Due to the high transmission power of UVB-76’s antenna, some theorize that the station’s signals could even reach outer space. This possibility opens the door to even more extraordinary speculation: that satellites might receive these signals and relay them to submarines, remote military units, or even unidentified aerial phenomena (UFOs). One theory even posits that UVB-76 could be part of an experimental system designed to scan or communicate with extraterrestrial life.
Under normal circumstances, UVB-76’s broadcasts are infrequent and minimal, just the repetitive buzz and the rare coded message. However, something highly unusual happened just ten hours ago. Within a single day, the station transmitted four coded voice messages, an event considered extremely rare and potentially significant.
These are the messages: NZHTI - 33 702 - NEPTUN - 66-52-20-75 NZHTI - 8002 361 - TIMUS - 56-85 NZHTI - 7000 0 8002 - LISOPLASH - 67-203-0808-0809 NZHTI - 62 505 - NUTOBAKS - 78 15 92 71
While the true meaning of these messages remains classified or unknown, some analysts believe they could be activation codes, operational signals, or test messages for military units. The repeated prefix "NZHTI" could be a call sign or an authentication marker. The names—NEPTUN, TIMUS, LISOPLASH, and NUTOBAKS, might refer to code-named operations, geographic regions, or military assets. The numeric sequences could represent coordinates, timestamps, or identification numbers.
Given the timing and unusual frequency of these messages, some suspect that UVB-76 is ramping up activity in preparation for a significant event. While there's no confirmation of any immediate threat, the sudden uptick in coded communications suggests that something serious could be developing.
Many experts believe UVB-76 is maintained as a wartime contingency channel, ready to relay commands in the event of nuclear war or a catastrophic loss of national communications. Its consistent presence, even during peacetime, supports the theory that it serves as an emergency or fail-safe communication method for defense forces.
The sudden surge of messages within one day suggests that something serious is happening, or about to. But who are they intended for? And more importantly, what comes next?" View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
What are the dangers of going to space?
For human spaceflight, the first thing I think about is the astronauts actually strapping themselves to a rocket. And if that isn’t dangerous enough, once they launch and they’re out into space in deep exploration, we have to worry about radiation.
Radiation is coming at them from all directions. From the Sun, we have solar particles. We have galactic cosmic rays that are all over in the universe. And those cause damage to DNA. On Earth here, we use sunscreen to protect us from DNA damage. Our astronauts are protected from the shielding that’s around them in the space vehicles.
We also have to worry about microgravity. So what happens there? We see a lot of bone and muscle loss in our astronauts. And so to prevent this, we actually have the astronauts exercising for hours every day. And of course we don’t want to run out of food on a space exploration mission. So we want to make sure that we have everything that the astronauts need to take with them to make sure that we can sustain them.
There are many risks associated with human space exploration. NASA has been planning for these missions to make our astronauts return home safely.
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated Apr 02, 2025 Related Terms
General Biological & Physical Sciences Human Research Program International Space Station (ISS) Science Mission Directorate Explore More
3 min read NASA Continues Support for Private Astronaut Missions to Space Station
Article 3 hours ago 2 min read Citizen Scientists Use NASA Open Science Data to Research Life in Space
How can life thrive in deep space? The Open Science Data Repository Analysis Working Groups invite…
Article 11 hours ago 2 min read NASA Receives 10 Nominations for the 29th Annual Webby Awards
Article 1 day ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.