Jump to content

Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A NASA F-15 aircraft sits 20 feet off the left side of the X-59 aircraft, with a white hangar and hills in the background, during electromagnetic interference testing.
NASA’s F-15D research aircraft is positioned adjacent to the X-59 during electromagnetic compatibility testing at U.S. Air Force Plant 42 in Palmdale, California. Researchers activated the F-15D’s radar, C-band transponder, and radios at different distances from the X-59 to evaluate potential electromagnetic interference with the aircraft’s flight-critical systems, ensuring the X-59 can operate safely with other aircraft. These tests showed that the aircraft’s integration is maturing and cleared a major hurdle that moves it one step closer to first flight.
NASA/Carla Thomas

NASA’s quiet supersonic X-59 research aircraft has cleared electromagnetic testing, confirming its systems will work together safely, without interference across a range of scenarios.

“Reaching this phase shows that the aircraft integration is advancing,” said Yohan Lin, NASA’s X-59 avionics lead. “It’s exciting to see the progress, knowing we’ve cleared a major hurdle that moves us closer to X-59’s first flight.”

Electromagnetic interference occurs when an electric or magnetic field source affects an aircraft’s operations, potentially impacting safety. This interference, whether from an external source or the aircraft’s own equipment, can disrupt the electronic signals that control critical systems – similar to effects that lead to static or crackling on a radio from a nearby emitting device, like a phone.

The tests, conducted at contractor Lockheed Martin Skunk Works’ facility in Palmdale, California, ensured that the X-59’s onboard systems – such as radios, navigation equipment, and sensors – did not interfere with one another or cause unexpected problems. During these tests, engineers activated each system on the aircraft one at a time while they monitored the other systems for possible interference.

NASA’s X-59 sits partially outside a white hangar at Lockheed Martin’s Skunk Works Facility in Palmdale, California, with cables and sensors extending from its cockpit.
NASA’s X-59 quiet supersonic research aircraft successfully completed electromagnetic interference (EMI) testing at Lockheed Martin Skunk Works in Palmdale, California. During EMI tests, the team examined each of the X-59’s internal electronic systems, ensuring they worked with one another without interference. The X-59 is designed to fly faster than the speed of sound while reducing the loud sonic boom to a quieter sonic thump.
NASA/Carla Thomas

“This testing helped us determine whether the systems within the X-59 are interfering with each other,” Lin said. “It’s called a source-victim test – essentially, we activate one system and monitor the other for issues like noise, glitches, faults, or errors.”

The X-59 will generate a quieter thump rather than a loud boom while flying faster than the speed of sound. The aircraft is the centerpiece of NASA’s Quesst mission, which will provide regulators with information that could help lift current bans on commercial supersonic flight over land. Currently, the aircraft is progressing through ground tests to ensure safety and performance. These included the recent, successful completion of a set of engine tests. The electromagnetic interference testing to examine the X-59’s internal electronic systems followed.

Other electromagnetic interference testing involved the team looking at the operation of the X-59’s landing gear, ensuring this critical component can extend and retract without affecting other systems. And they tested that the fuel switch shutoff was functioning properly without interference.

Electromagnetic compatibility was also assessed during this testing – making sure the X-59’s systems will function properly when it eventually flies near NASA research aircraft.

A test pilot, wearing a brown flight suit and gravity harness, stands under an open glass cockpit, looking over the side of a white aircraft as he prepares to exit via ladder.
NASA test pilot Jim Less prepares to exit the cockpit of the quiet supersonic X-59 aircraft in between electromagnetic interference (EMI) testing. The EMI testing ensures an aircraft’s systems function properly under various conditions of electromagnetic radiation. The X-59 is the centerpiece of the NASA’s Quesst mission, designed to demonstrate quiet supersonic technology and provide data to address a key barrier to commercial supersonic travel.
NASA/Carla Thomas

Researchers staged the X-59 on the ground in front of NASA’s F-15D, placing them 47 feet apart, then 500 feet apart. The proximity of the two aircraft replicated conditions needed for the F-15D to use a special probe to gather measurements about the shock waves the X-59 will produce.

“We want to confirm there’s compatibility between the two aircraft, even at close proximity,” Lin said.

For the electromagnetic compatibility testing, the team powered up the X-59’s engine while turning on the F-15D’s radar, C-band radar transponder, and radios. Data from the X-59 were transmitted to NASA’s Mobile Operations Facility, where control room staff and engineers monitored for anomalies.

“You want to make discoveries of any potential electromagnetic interference or electromagnetic compatibility issues on the ground first,” Lin said. “This reduces risk and ensures we’re not learning about problems in the air.”

Now that electromagnetic testing is complete, the X-59 is ready to move on to aluminum bird tests – during which data will be fed to the aircraft on the ground under both normal and failure conditions – and then taxi tests before flight.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A Volvo Crawler Excavator severs the airframe, separating the tail section from the fuselage, of the modified C-141 Kuiper Airborne Observatory at Moffett Field, California.NASA The planned deconstruction, disposal, and preservation of historic parts of NASA’s decommissioned Kuiper Airborne Observatory is complete. Part of the airborne astronomy legacy of NASA’s Ames Research Center in California’s Silicon Valley, Kuiper conducted more than two decades of astronomical observations from 1975 to 1995. Later this year, the Kuiper cockpit will go on display at the Pima Air & Space Museum in Pima, Arizona, where NASA’s retired SOFIA (Stratospheric Observatory for Infrared Astronomy) aircraft is located, while its telescope will go on display at the Moffett Field Museum in the NASA Research Park.
      Author: Cara Dodge

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Gateway’s HALO module at Northrop Grumman’s facility in Gilbert, Arizona, on April 4, 2025, shortly after its arrival from Thales Alenia Space in Turin, Italy. NASA/Josh Valcarcel NASA continues to mark progress on plans to work with commercial and international partners as part of the Gateway program. The primary structure of HALO (Habitation and Logistics Outpost) arrived at Northrop Grumman’s facility in Gilbert, Arizona, where it will undergo final outfitting and verification testing.
      HALO will provide Artemis astronauts with space to live, work, and conduct scientific research. The habitation module will be equipped with essential systems including command and control, data handling, energy storage, power distribution, and thermal regulation.
      Following HALO’s arrival on April 1 from Thales Alenia Space in Turin, Italy, where it was assembled, NASA and Northrop Grumman hosted an April 24 event to acknowledge the milestone, and the module’s significance to lunar exploration. The event opened with remarks by representatives from Northrop Grumman and NASA, including NASA’s Acting Associate Administrator for Exploration Systems Development Lori Glaze, Gateway Program Manager Jon Olansen, and NASA astronaut Randy Bresnik. Event attendees, including Senior Advisor to the NASA Administrator Todd Ericson, elected officials, and local industry and academic leaders, viewed HALO and virtual reality demonstrations during a tour of the facilities.
      Dr. Lori Glaze, acting associate administrator for NASA’s Exploration Systems Development Mission Directorate, and Dr. Jon B. Olansen, Gateway Program manager, on stage during an April 24, 2025, event at Northrop Grumman’s facility in Gilbert, Arizona, commemorating HALO’s arrival in the United States. Northrop Grumman While the module is in Arizona, HALO engineers and technicians will install propellant lines for fluid transfer and electrical lines for power and data transfer. Radiators will be attached for the thermal control system, as well as racks to house life support hardware, power equipment, flight computers, and avionics systems. Several mechanisms will be mounted to enable docking of the Orion spacecraft, lunar landers, and visiting spacecraft.
      Launching on top of HALO is the ESA (European Space Agency)-provided Lunar Link system which will enable communication between crewed and robotic systems on the Moon and to mission control on Earth. Once these systems are installed, the components will be tested as an integrated spacecraft and subjected to thermal vacuum, acoustics, vibration, and shock testing to ensure the spacecraft is ready to perform in the harsh conditions of deep space.
      In tandem with HALO’s outfitting at Northrop Grumman, the Power and Propulsion Element – a powerful solar electric propulsion system – is being assembled at Maxar Space Systems in Palo Alto, California. Solar electric propulsion uses energy collected from solar panels converted to electricity to create xenon ions, then accelerates them to more than 50,000 miles per hour to create thrust that propels the spacecraft.
      The element’s central cylinder, which resembles a large barrel, is being attached to the propulsion tanks, and avionics shelves are being installed. The first of three 12-kilowatt thrusters has been delivered to NASA’s Glenn Research Center in Cleveland for acceptance testing before delivery to Maxar and integration with the Power and Propulsion Element later this year.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Linkedin logo @NASA Share
      Details
      Last Updated Apr 25, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station General Humans in Space Explore More
      2 min read NASA Welcomes Gateway Lunar Space Station’s HALO Module to US
      From Italy to Arizona: Gateway’s first habitation module takes a major step on its path…
      Article 3 weeks ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 2 months ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 3 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Syncom Space Services employees Kenneth Shipman, left, and Jesse Yarbrough perform final tubing install in early March to prepare the interstage simulator gas system on the Thad Cochran Test Stand at NASA’s Stennis Space Center for leak checks. Leak checks were performed prior to activation of the gas system this month. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin Syncom Space Services employees Branson Cuevas, left, Kenneth Shipman, and Jesse Yarbrough install final tubing in early March before activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Crews at NASA’s Stennis Space Center recently completed activation of interstage gas systems needed for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.
      The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. For Green Run, teams will activate and test all systems to ensure the stage is ready to fly. Green Run will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission.
      The interstage simulator component will function like the SLS interstage section that protects the upper stage during Artemis launches. The interstage simulator will do the same during Green Run testing of the stage at NASA Stennis.
      The interstage simulator gas system will provide helium, nitrogen, and hydrogen to the four RL10 engines for all wet dress and hot fire exercises and tests.
      During the activation process, NASA Stennis crews simulated the engines and flowed gases to mirror various conditions and collect data on pressures and temperatures. NASA Stennis teams conducted 80 different flow cases, calculating such items as flow rates, system pressure drop, and fill/vent times. The calculated parameters then were compared to models and analytics to certify the gas system meets performance requirements.
      NASA engineers Chad Tournillon, left, and Robert Smith verify the functionality of the control system in early March for activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Members of the engineering and operations team review data as it is collected in early March during activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. Pictured are NASA’s Mark Robinson, Robert Simmers, Jack Conley, and Nick Nugent. Activation of the gas systems marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin NASA engineers Pablo Gomez, left, and B.T. Wigley collect data in early March during activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the NASA Stennis stand.NASA/Danny Nowlin Syncom Space Services employees Brandon Fleming, Robert Sheaffer, and Logan Upton review paperwork in early March prior to activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Syncom Space Services engineering tech Brandon Fleming tightens a pressure transducer on the Thad Cochran Test Stand at NASA’s Stennis Space Center in early March. Various transducers were used to provide data during subsequent activation of the interstage simulator gas systems at the stand. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin Crews now will work to activate the umbilical gases and liquid oxygen systems. The NASA Stennis team will then conduct water system activation, where it will flow the flame deflector, aspirator, diffuser cooling circuits, purge rings and water-cooled fairing.
      Afterward, the team will deploy the FireX system to check for total coverage, expected to be completed in the summer. 
      Before the exploration upper stage, built by Boeing at NASA’s Michoud Assembly Facility in New Orleans, arrives at NASA Stennis, crews will perform a final 24-hour check, or stress test, across all test complex facilities to demonstrate readiness for the test series.
      Explore More
      3 min read Lagniappe for April 2025
      Article 3 weeks ago 4 min read Lagniappe for March 2025
      Article 2 months ago 6 min read NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel
      Article 2 months ago View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ECF 2024 Quadchart Underwood.pdf
      Thomas Underwood
      University of Texas, Austin
      This project will demonstrate a fusion propulsion system based on z-pinch which is a method of compressing plasma by running electrical current though it. The z-pinch will compress and heat the plasma to produce fusion reactions, and the system will be paired with an electromagnetic accelerator to produce thrust from these reactions. The effort intends to design, build, and test a prototype device and use computational modeling to evaluate the potential performance of larger systems which would be suitable for powering deep-space missions.
      Back to ECF 2024 Full List
      Share
      Details
      Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
      Early Career Faculty (ECF) Space Technology Research Grants View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross When you’re testing a cutting-edge NASA aircraft, you need specialized tools to conduct tests and capture data –but if those tools need maintenance, you need to wait until they’re fixed. Unless you have a backup. That’s why NASA recently calibrated a new shock-sensing probe to capture shock wave data when the agency’s X-59 quiet supersonic research aircraft begins its test flights.
      When an aircraft flies faster than the speed of sound, it produces shock waves that travel through the air, creating loud sonic booms. The X-59 will divert those shock waves, producing just a quiet supersonic thump. Over the past few weeks, NASA completed calibration flights on a new near-field shock-sensing probe, a cone-shaped device that will capture data on the shock waves that the X-59 will generate.
      This shock-sensing probe is mounted to an F-15D research aircraft that will fly very close behind the X-59 to collect the data NASA needs. The new unit will serve as NASA’s primary near-field probe, with an identical model NASA developed last year acting as a backup mounted to an additional F-15B.
      The two units mean the X-59 team has a ready alternative if the primary probe needs maintenance or repairs. For flight tests like the X-59’s – where data gathering is crucial and operations revolve around tight timelines, weather conditions, and other variables – backups for critical equipment help to ensure continuity, maintain schedule, and preserve efficiency of operations.
      “If something happens to the probe, like a sensor failing, it’s not a quick fix,” said Mike Frederick, principal investigator for the probe at NASA’s Armstrong Flight Research Center in Edwards, California. “The other factor is the aircraft itself. If one needs maintenance, we don’t want to delay X-59 flights.”
      To calibrate the new probe, the team measured the shock waves of a NASA F/A-18 research aircraft. Preliminary results indicated that the probe successfully captured pressure changes associated with shock waves, consistent with the team’s expectations. Frederick and his team are now reviewing the data to confirm that it aligns with ground mathematical models and meets the precision standards required for X-59 flights.
      Researchers at NASA Armstrong are preparing for additional flights with both the primary and backup probes on their F-15s. Each aircraft will fly supersonic and gather shock wave data from the other. The team is working to validate both the primary and backup probes to confirm full redundancy – in other words, making sure that they have a reliable backup ready to go.
      Share
      Details
      Last Updated Apr 17, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 20 hours ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 2 days ago 3 min read Going Home: NASA Retires S-3B Viking to POW/MIA Museum
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...