Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Did you know some of the brightest sources of light in the sky come from the regions around black holes in the centers of galaxies? It sounds a little contradictory, but it’s true! They may not look bright to our eyes, but satellites have spotted oodles of them across the universe. 
      One of those satellites is NASA’s Fermi Gamma-ray Space Telescope. Fermi has found thousands of these kinds of galaxies since it launched in 2008, and there are many more out there!
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Watch a cosmic gamma-ray fireworks show in this animation using just a year of data from the Large Area Telescope (LAT) aboard NASA’s Fermi Gamma-ray Space Telescope. Each object’s magenta circle grows as it brightens and shrinks as it dims. The yellow circle represents the Sun following its apparent annual path across the sky. The animation shows a subset of the LAT gamma-ray records available for more than 1,500 objects in a continually updated repository. Over 90% of these sources are a type of galaxy called a blazar, powered by the activity of a supermassive black hole. NASA’s Marshall Space Flight Center/Daniel Kocevski Black holes are regions of space that have so much gravity that nothing — not light, not particles, nada — can escape. Most galaxies have supermassive black holes at their centers, and these black holes are hundreds of thousands to billions of times the mass of our Sun. In active galactic nuclei (also called “AGN” for short, or just “active galaxies”) the central region is stuffed with gas and dust that’s constantly falling toward the black hole. As the gas and dust fall, they start to spin and form a disk. Because of the friction and other forces at work, the spinning disk starts to heat up.
      This composite view of the active galaxy Markarian 573 combines X-ray data (blue) from NASA’s Chandra X-ray Observatory and radio observations (purple) from the Karl G. Jansky Very Large Array in New Mexico with a visible light image (gold) from the Hubble Space Telescope. Markarian 573 is an active galaxy that has two cones of emission streaming away from the supermassive black hole at its center. X-ray: NASA/CXC/SAO/A.Paggi et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA The disk’s heat gets emitted as light, but not just wavelengths of it that we can see with our eyes. We detect light from AGN across the entire electromagnetic spectrum, from the more familiar radio and optical waves through to the more exotic X-rays and gamma rays, which we need special telescopes to spot.
       
      In the heart of an active galaxy, matter falling toward a supermassive black hole creates jets of particles traveling near the speed of light as shown in this artist’s concept. NASA/Goddard Space Flight Center Conceptual Image Lab About one in 10 AGN beam out jets of energetic particles, which are traveling almost as fast as light. Scientists are studying these jets to try to understand how black holes — which pull everything in with their huge amounts of gravity — somehow provide the energy needed to propel the particles in these jets.
      This artist’s concept shows two views of the active galaxy TXS 0128+554, located around 500 million light-years away. Left: The galaxy’s central jets appear as they would if we viewed them both at the same angle. The black hole, embedded in a disk of dust and gas, launches a pair of particle jets traveling at nearly the speed of light. Scientists think gamma rays (magenta) detected by NASA’s Fermi Gamma-ray Space Telescope originate from the base of these jets. As the jets collide with material surrounding the galaxy, they form identical lobes seen at radio wavelengths (orange). The jets experienced two distinct bouts of activity, which created the gap between the lobes and the black hole. Right: The galaxy appears in its actual orientation, with its jets tipped out of our line of sight by about 50 degrees. NASA’s Goddard Space Flight Center Many of the ways we tell one type of AGN from another depend on how they’re oriented from our point of view. With radio galaxies, for example, we see the jets from the side as they’re beaming vast amounts of energy into space. Then there’s blazars, which are a type of AGN that have a jet that is pointed almost directly at Earth, which makes the AGN particularly bright. 
      Blazar 3C 279’s historic gamma-ray flare in 2015 can be seen in this image from the Large Area Telescope on NASA’s Fermi satellite. During the flare, the blazar outshone the Vela pulsar, usually the brightest object in the gamma-ray sky. NASA/DOE/Fermi LAT Collaboration Fermi has been searching the sky for gamma ray sources since 2008. More than half of the sources it has found have been blazars. Gamma rays are useful because they can tell us a lot about how particles accelerate and how they interact with their environment.
      So why do we care about AGN? We know that some AGN formed early in the history of the universe. With their enormous power, they almost certainly affected how the universe changed over time. By discovering how AGN work, we can understand better how the universe came to be the way it is now.
      Share








      Details
      Last Updated Apr 30, 2025 Related Terms
      The Universe Active Galaxies Fermi Gamma-Ray Space Telescope Galaxies Explore More
      8 min read How to Contribute to Citizen Science with NASA


      Article


      24 hours ago
      6 min read Where Does Gold Come From? NASA Data Has Clues


      Article


      1 day ago
      2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Galaxies



      Black Holes



      Telescopes 101



      Fermi


      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 5 min read
      Sols 4518-4519: Thumbs up from Mars
      This image was taken by Front Hazard Avoidance Camera (Front Hazcam) onboard NASA’s Mars rover Curiosity on Sol 4516. NASA/JPL-Caltech Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Earth planning date: Monday, 21st April 2025
      It is Easter Monday, a bank holiday here in the United Kingdom. I am Science Operations Working Group Chair today, a role that is mainly focused on coordinating all the different planning activities on a given day, and ensuring all the numbers are communicated to everyone. And with that I mean making sure that everyone knows how much power we have and other housekeeping details. It’s a fun role, but on the more technical side of the mission, which means I don’t get to look at the rocks in the workspace as closely as my colleagues who are planning the activities of the instruments directly investigating the rocks. It’s a lot of fun to see how planning day after planning day things come together. But why am I doing this on a bank holiday, when I could well be on my sofa? I just was reminded in the hours before planning how much fun it actually is to spend a little more time looking at all the images  – and not the usual hectic rush coming out of an almost complete work day (we start at 8 am PDT, which is 4 pm here in the UK!). So, I enjoyed the views of Mars, and I think Mars gave me a thumbs up for it, or better to say a little pointy ‘rock up’ in the middle of a sandy area, as you can see in the image above!
      I am sure you noticed that our team has a lot to celebrate! Less than a month after the publication about alkanes made headlines in many news outlets, we have another big discovery from our rover, now 4518 sols on Mars: in three drill holes, the rover instruments detected the mineral siderite, a carbonate. That allowed a group of scientists from our team to piece together the carbon cycle of Mars. If you want to know more, the full story is here. I am looking forward to our next big discovery. Who knows that that is? Well, it would not be exploration, if we knew!
      But today’s workspace looks intriguing with all its little laminae (the very fine layers) and its weathering patterns that look like a layered cake that little fingers have picked the icing off! (Maybe I had too many treats of the season this weekend? That’s for you to decide!) But then Mars did what it did so many times lately: we did not pass our slip risk assessment and therefore had to keep the arm stowed. I think there is a direct link between geologists getting exciting about all the many rocks, and a wheel ending up on one of them, making it unsafe to unstow the arm. There was a collective sigh of disappointment – and then we moved on to what we actually can do.
      And that is a lot of imaging. As exciting as getting an APXS measurement and MAHLI images would be, Mastcam images, ChemCam chemistry and RMI images are exciting, too. The plan starts with three Mastcam activities to document the small troughs that form around some of the rocks. Those amount to 15 frames already, then we have a ten-frame mosaic on a target called “West Fork,” which is looking at rocks in the middle ground of the scenery and display interesting layering. Finally, a 84 frame mosaic will image Texoli, one of the large buttes in our neighbourhood, in all its beauty. It shows a series of interesting layers and structures, including some that might be akin to what we expect the boxwork structures to look like. Now, did you keep count? Yes, that’s 109 frames from Mastcam – and add the one for the documentation of the LIBS target, too, and Mastcam takes exactly 110 frames!
      ChemCam is busy with a target called “Lake Poway,” which represents the bedrock around us. Also in the ChemCam activities is a long distance RMI upwards Mt Sharp to the Yardang unit. After the drive – more of that later – ChemCam as an automated observation, we call it AEGIS, where ChemCam uses a clever algorithm to pick its own target.
      The drive will be very special today. As you may have seen, we are imaging our wheels in regular intervals to make sure that we are keeping track of the wear and tear that over 34 km of offroad driving on Mars have caused. For that, we need a very flat area and our rover drivers did locate one due West of the current rover positions. So, that’s where we will drive first, do the full MAHLI wheel imaging and then return to the originally planned path. That’s where we’ll do a MARDI image, post drive imaging to prepare the planning for the next sols, and the above mentioned AEGIS.
      In addition to all the geologic investigations, there is continuous environmental monitoring ongoing. Curiosity will look at opacity and dust devils, and REMS will switch on regularly to measure wind speeds, humidity, temperature, ultraviolet radiation and pressure throughout the plan. Let’s not forget DAN, which monitors water and chlorine in the subsurface as we are driving along. It’s so easy to forget the ones that sit quietly in the back – but in this case, they have important data to contribute!
      Explore More
      3 min read Sols 4515-4517: Silver Linings


      Article


      2 days ago
      2 min read Origins Uncertain: ‘Skull Hill’ Rock


      Article


      6 days ago
      2 min read Sols 4511-4512: Low energy after a big weekend?


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      The Mars Report


      The Mars Report newsletter from NASA is your source for everything on or about the Red Planet. We bring you…

      View the full article
    • By USH
      For over 80 years, covert research into exotic propulsion, anti-gravity systems, and spacetime manipulation has been housed within deep black programs, classified efforts shielded from both public and congressional oversight. 

      Now, on April 14, 2025, Michael Katzios, the new White House science chief, made a bold claim: “Our technologies permit us to manipulate time and space...” Shortly after, he doubled down, promising innovations that would let us “bend time and space” and “drive us further into the endless frontier.” These weren’t offhand remarks, they were published on the official White House site, signaling intent. 
      What does "Manipulating Spacetime" really mean? Spacetime is the four-dimensional framework of our universe. Per Einstein’s theory, mass and energy warp this fabric, creating gravity and affecting time. To manipulate it would mean bending reality itself, shortening distances, warping time, or enabling faster-than-light travel. 
      Just days before Katzios’ remarks, President Trump said: “We have a weapon that no one has a clue what it is... more powerful than anything even close.” Was he referencing to a spacetime weapon? 
      Trump isn’t the first high-level figure to hint at such capabilities. Back in 2019, Lt. Gen. Steve Kwast publicly discussed technology capable of transporting a person anywhere on Earth in under an hour, suggesting real-world applications of physics far beyond current norms. He also touched on wireless, space-based energy transmission. 
      Rumors have long circulated about transatmospheric vehicles, craft capable of seamless operation both within Earth’s atmosphere and in space. Though unconfirmed, these platforms may represent a technological bridge between known aerospace systems and genuine spacetime engineering. (Consider Gary McKinnon’s 2002 discovery during his hack of U.S. military systems: references to a secret space fleet and "non-terrestrial officers.") 
      But it is not only about manipulating time and space. 
      What might they also have: Anti-Gravity Propulsion: Altering inertia with plasma or exotic materials, referenced in Navy patents. Warp Drives: Bending space around a craft to move without motion. Zero-Point Energy: Tapping the quantum vacuum for limitless energy, a paradigm-shifting source of power. 
      But why some groups want to keep it secret? There are compelling reasons for secrecy, none of them rooted in public interest: 
      Control of Power – Whoever controls this tech controls the future. Economic Impact – It would collapse the fossil fuel, aviation, and defense sectors. Weaponization Risk – These tools could be catastrophic in the wrong hands. Psychological Shock – It would rewrite everything we know about science and our place in the cosmos. 
      Despite growing testimony and a trove of leaked documents, officials continue to dismiss these claims. The Deep State line remains unchanged: “No empirical evidence exists for reverse-engineering extraterrestrial technology.” But the evidence says otherwise. 
      Supporting evidence: 1. Exotic materials reportedly recovered in 1950s, held by Lockheed. 2. The 1953 Robertson Panel even set the tone for decades of deliberate obfuscation, publicly debunking UFOs while secretly studying their implications. The CIA used Project Blue Book to publicly debunk UFOs. 3. As early as 1966, the U.S. Air Force reportedly managed over 30 classified anti-gravity projects.  4. A 1971 Australian Defense report referenced America’s "Advanced Saucer Aircraft" and a Cold War “UFO crash program” into anti-gravity propulsion. 5. The US government, through its CIA's Office of Global Access (OGA), is reported to have a secret program to retrieve and reverse-engineer crashed UFOs. This program, which began in 2003, is said to have recovered at least nine non-human aircraft, some of which were intact. The OGA works with special operations forces like SEAL teams to conduct these retrievals, keeping the operations highly secret. 6. CIA allegedly blocked a 2024 transfer of exotic materials from Lockheed to Bigelow Aerospace. 
      Ben Rich, former head of Lockheed Skunk Works, reportedly stated: “We now have the technology to take ET home.” 
      Don Phillips, also from Lockheed, confirmed reverse-engineering efforts related to recovered UFO craft, allegedly including materials from the infamous 1947 Roswell incident.  
      Dr. Salvatore Pais, a Navy scientist, filed patents (2016–2019) for highly unconventional devices, including a Space-Time Modification Weapon. These patents describe the use of electromagnetic fields, plasma, and rotational force fields. Theoretically, this device could create a spacetime modification weapon more powerful than hydrogen bombs. The Navy invested USD 508,000 testing the concept between 2016-2019. 
      But what could be the reason they are starting to reveal it now? The sudden shift toward public statements about advanced capabilities seems deliberate. 
      Consider the possible motives: 1. Strategic Signaling: A subtle warning to adversaries: “We possess technology beyond your reach.” 2.Controlled Disclosure: Shaping the narrative gradually to maintain public trust and institutional control. 3. Leaks Are Coming: Private-sector breakthroughs or whistleblowers may soon expose the truth. 4. Justifying Black Budgets: Revealing exotic tech lends credibility to decades of hidden spending under national security. 
      But perhaps the most compelling reason: a major event, whether real, staged, or cosmic in nature or eventually an alien contact scenario is on the horizon. This may be phase one of psychological preparation. 
      Finally; the evidence suggests that these exotic advanced technologies already exist, whether reverse-engineered or the result of disruptive physics breakthroughs. But what’s happening now isn’t full disclosure. It’s a carefully managed narrative operation, an information war cloaked in the language of advanced science. 
      References and must watch: Alex Jones and Top Deep State / COG Researcher Daniel Liszt:  https://x.com/RealAlexJones/status/1913354709106098659 Richard Dolan: https://www.youtube.com/watch?v=qd7CIe5wnwQ View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Curiosity Mars rover sees its tracks receding into the distance at a site nicknamed “Ubajara” on April 30, 2023. This site is where Curiosity made the discovery of siderite, a mineral that may help explain the fate of the planet’s thicker ancient atmosphere.Credit: NASA/JPL-Caltech/MSSS New findings from NASA’s Curiosity Mars rover could provide an answer to the mystery of what happened to the planet’s ancient atmosphere and how Mars has evolved over time.
      Researchers have long believed that Mars once had a thick, carbon dioxide-rich atmosphere and liquid water on the planet’s surface. That carbon dioxide and water should have reacted with Martian rocks to create carbonate minerals. Until now, though, rover missions and near-infrared spectroscopy analysis from Mars-orbiting satellites haven’t found the amounts of carbonate on the planet’s surface predicted by this theory.
      Reported in an April paper in Science, data from three of Curiosity’s drill sites revealed the presence of siderite, an iron carbonate mineral, within the sulfate-rich rocky layers of Mount Sharp in Mars’ Gale Crater.
      “The discovery of abundant siderite in Gale Crater represents both a surprising and important breakthrough in our understanding of the geologic and atmospheric evolution of Mars,” said Benjamin Tutolo, associate professor at the University of Calgary, Canada, and lead author of the paper.
      To study the Red Planet’s chemical and mineral makeup, Curiosity drills three to four centimeters down into the subsurface, then drops the powdered rock samples into its CheMin instrument. The instrument, led by NASA’s Ames Research Center in California’s Silicon Valley, uses X-ray diffraction to analyze rocks and soil. CheMin’s data was processed and analyzed by scientists at the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston.
      “Drilling through the layered Martian surface is like going through a history book,” said Thomas Bristow, research scientist at NASA Ames and coauthor of the paper. “Just a few centimeters down gives us a good idea of the minerals that formed at or close to the surface around 3.5 billion years ago.”
      The discovery of this carbonate mineral in rocks beneath the surface suggests that carbonate may be masked by other minerals in near-infrared satellite analysis. If other sulfate-rich layers across Mars also contain carbonates, the amount of stored carbon dioxide would be a fraction of that needed in the ancient atmosphere to create conditions warm enough to support liquid water. The rest could be hidden in other deposits or have been lost to space over time.
      In the future, missions or analyses of other sulfate-rich areas on Mars could confirm these findings and help us better understand the planet’s early history and how it transformed as its atmosphere was lost.
      Curiosity, part of NASA’s Mars Exploration Program (MEP) portfolio, was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      For more information on Curiosity, visit: 
      https://science.nasa.gov/mission/msl-curiosity
      News Media Contacts 
      Karen Fox / Molly Wasser 
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 

      Andrew Good 
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Share
      Details
      Last Updated Apr 17, 2025 Related Terms
      Ames Research Center Astromaterials Curiosity (Rover) General Jet Propulsion Laboratory Mars Science Laboratory (MSL) Explore More
      7 min read NASA’s SpaceX 32nd Commercial Resupply Mission Overview
      NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21,…
      Article 21 hours ago 6 min read NASA’s Chandra Releases New 3D Models of Cosmic Objects
      Article 24 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
      Article 1 day ago Keep Exploring Discover Related Topics
      Curiosity Rover (MSL)
      Ames Research Center
      Mars
      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
      Curiosity Science Instruments
      Curiosity’s scientific instruments are the tools that bring us stunning images of Mars and ground-breaking discoveries.
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Why do we grow plants in space?

      Plants are such versatile organisms that they can fulfill many roles in our exploration of space. Plants provide us with food, with oxygen, they can recycle water and waste, and they can even provide us with psychological benefits. So all these functions will help NASA in fulfilling our goal of trying to create a sustainable environment for human presence in space.

      But there are also other benefits. We can investigate how plants adapt to the novel environment of space, something that’s completely outside their evolutionary history. We can develop new processes and technologies to cultivate plants in difficult and even extreme environments. All these lessons learned will help us in ultimately improving the lives of humans here on Earth by being able to better cultivate plants.

      So why do we grow plants in space? To be able to create a sustainable environment for us to thrive in space, as well as improve lives and agricultural techniques here on Earth.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Apr 15, 2025 Related Terms
      General Advanced Plant Habitat (APH) Biological & Physical Sciences International Space Station (ISS) ISS Research Plant Biology Science & Research Science Mission Directorate Space Biology Space Biology Program Explore More
      5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe 
      Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that…
      Article 2 hours ago 5 min read NASA’s Hubble Tracks a Roaming Magnetar of Unknown Origin
      Researchers using NASA’s Hubble Space Telescope have discovered the magnetar called SGR 0501+4516 is traversing…
      Article 3 hours ago 3 min read In the Starlight: Tina Preyan Fuels the Future at Johnson
      Article 5 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...