Jump to content

2024 Annual Highlights of Results from the International Space Station Science


Recommended Posts

  • Publishers
Posted

The 2024 Annual Highlights of Results from the International Space Station is now available. This new edition contains updated bibliometric analyses, a list of all the publications documented in fiscal year 2024, and synopses of the most recent and recognized scientific findings from investigations conducted on the space station. These investigations are sponsored by NASA and all international partners – CSA (Canadian Space Agency), ESA (European Space Agency), JAXA (Japan Aerospace Exploration Agency), and the State Space Corporation Roscosmos (Roscosmos) – for the advancement of science, technology, and education.

websummaryimage-jsc2024e041215.jpg?w=204
Dr. Dmitry Oleynikov remotely operates a surgical robot aboard the Space Station using controls at the Virtual Incision offices in Lincoln, Nebraska. Robotic Surgery Tech Demo tests techniques for performing a simulated surgical procedure in microgravity using a miniature surgical robot that can be remotely controlled from Earth.
Credits: University of Nebraska-Lincoln

Between Oct. 1, 2023, and Sept. 30, 2024, more than 350 publications were reported. With approximately 40% of the research produced in collaboration between more than two countries and almost 80% of the high-impact studies published in the past seven years, station has continued to generate compelling and influential science above national and global standards since 2010.

The results achieved from station research provide insights that advance the commercialization of space and benefit humankind.

Some of the findings presented in this edition include:

The content in the Annual Highlights of Results from the International Space Station has been reviewed and approved by the International Space Station Program Science Forum, a team of scientists and administrators representing NASA and international partners that are dedicated to planning, improving, and communicating the research operated on the space station.

[See the list of Station Research Results publications here and find the current edition of the Annual Highlights of Results here.]  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      Ames Science Directorate’s Stars of the Month: September 2025

      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Earth Science Star: Taejin Park
      Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
      Space Science and Astrobiology Star: Lydia Schweitzer
      Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
      Space Science and Astrobiology Star: Rachel Morgan
      Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
      View the full article
    • By NASA
      Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.NASA/Frank Michaux With Artemis II, NASA is taking the science of living and working in space beyond low Earth orbit. While the test flight will help confirm the systems and hardware needed for human deep space exploration, the crew also will be serving as both scientists and volunteer research subjects, completing a suite of experiments that will allow NASA to better understand how human health may change in deep space environments. Results will help the agency build future interventions, protocols, and preventative measures to best protect astronauts on future missions to the lunar surface and to Mars.

      Science on Artemis II will include seven main research areas:

      ARCHeR: Artemis Research for Crew Health and Readiness 

      NASA’s Artemis II mission provides an opportunity to explore how deep space travel affects sleep, stress, cognition, and teamwork — key factors in astronaut health and performance. While these effects are well-documented in low Earth orbit, they’ve never been fully studied during lunar missions.

      Artemis II astronauts will wear wristband devices that continuously monitor movement and sleep patterns throughout the mission. The data will be used for real-time health monitoring and safety assessments, while pre- and post-flight evaluations will provide deeper insights into cognition, behavior, sleep quality, and teamwork in the unique environment of deep space and the Orion spacecraft.

      The findings from the test flight will inform future mission planning and crew support systems, helping NASA optimize human performance for the next era of exploration on the Moon and Mars.

      Immune Biomarkers

      Saliva provides a unique window into how the human immune system functions in a deep space environment. Tracing changes in astronauts’ saliva from before, during, and after the mission will enable researchers to investigate how the human body responds to deep space in unprecedented ways.

      Dry saliva will be collected before, during, and after the mission. It will be blotted onto specialized paper in pocket-sized booklets since equipment needed to preserve wet spit samples in space – including refrigeration – will not be available due to volume constraints. To augment that information, liquid saliva and blood samples will be collected before and after the mission.  
      NASA Astronaut Randy Bresnik prepares to collect a dry saliva sample aboard the International Space Station. The process, which helps scientists investigate how the immune system is affected by spaceflight and will be part of the Artemis II mission, involves blotting saliva onto special paper that’s stored in pocket-sized booklets.Credit: NASA With these wet and dry saliva samples, scientists will gain insights into how the astronauts’ immune systems are affected by the increased stresses of radiation, isolation, and distance from Earth during their deep space flight. They also will examine whether otherwise dormant viruses are reactivated in space, as has been seen previously on the International Space Station with viruses that can cause chickenpox and shingles.

      The information gathered from this study, when combined with data from other missions, will help researchers develop ways to keep crew members safe and healthy as we explore farther and travel for longer periods on deep space missions.

      AVATAR: A Virtual Astronaut Tissue Analog Response

      AVATAR is another important component of NASA’s strategy to gain a holistic understanding of how the deep space environment affects humans. Scientists plan to use organ-on-a-chip technology during Artemis II, marking the first time these devices will be used beyond the Van Allen belts.

      Roughly the size of a USB thumb drive, the chips will measure how individual astronauts respond to deep space stressors, including extreme radiation and microgravity. The organ chips will contain cells developed from preflight blood donations provided by crew members to create miniature stand-ins, or “avatars,” of their bone marrow. Bone marrow plays a vital role in the immune system and is particularly sensitive to radiation, which is why scientists selected it for this study.
      An organ chip for conducting bone marrow experiments in space. Credit: Emulate
      A key goal for this research is to validate whether organ chips can serve as accurate tools for measuring and predicting human responses to stressors. To evaluate this, scientists will compare AVATAR data with space station findings, as well as with samples taken from the crew before and after flight.

      AVATAR could inform measures to ensure crew health on future deep space missions, including personalizing medical kits to each astronaut. For citizens on Earth, it could lead to advancements in individualized treatments for diseases such as cancer.

      AVATAR is a demonstration of the power of public-private partnerships. It’s a collaboration between government agencies and commercial space companies: NASA, National Center for Advancing Translational Sciences within the National Institutes of Health, Biomedical Advanced Research and Development Authority, Space Tango, and Emulate.

      Artemis II Standard Measures

      The crew also will become the first astronauts in deep space to participate in the Spaceflight Standard Measures study, an investigation that’s been collecting data from participating crew members aboard the space station and elsewhere since 2018. The study aims to collect a comprehensive snapshot of astronauts’ bodies and minds by gathering a consistent set of core measurements of physiological response.

      The crew will provide biological samples including blood, urine, and saliva for evaluating nutritional status, cardiovascular health, and immunological function starting about six months before their launch. The crew also will participate in tests and surveys evaluating balance, vestibular function, muscle performance, changes in their microbiome, as well as ocular and brain health. While in space, data gathering will include an assessment of motion sickness symptoms. After landing, there will be additional tests of head, eye, and body movements, among other functional performance tasks. Data collection will continue for a month after their return.

      All this information will be available for scientists interested in studying the effects of spaceflight via request to NASA’s Life Sciences Data Archive. The results from this work could lead to future interventions, technologies, and studies that help predict the adaptability of crews on a Mars mission.

      Radiation Sensors Inside Orion

      During the uncrewed Artemis I mission, Orion was blanketed in 5,600 passive and 34 active radiation sensors. The information they gathered assured researchers Orion’s design can provide protection for crew members from hazardous radiation levels during lunar missions. That doesn’t mean that scientists don’t want more information, however.

      Similar to Artemis I, six active radiation sensors, collectively called the Hybrid Electronic Radiation Assessors, will be deployed at various locations inside the Orion crew module. Crew also will wear dosimeters in their pockets. These sensors will provide warnings of hazardous radiation levels caused by space weather events made by the Sun. If necessary, this data will be used by mission control to drive decisions for the crew to build a shelter to protect from radiation exposure due to space weather. 

      Additionally, NASA has again partnered the German Space Agency DLR for an updated model of their M-42 sensor – an M-42 EXT – for Artemis II. The new version offers six times more resolution to distinguish between different types of energy, compared to the Artemis I version. This will allow it to accurately measure the radiation exposure from heavy ions which are thought to be particularly hazardous for radiation risk. Artemis II will carry four of the monitors, affixed at points around the cabin by the crew.

      Collectively, sensor data will paint a full picture of radiation exposures inside Orion and provide context for interpreting the results of the ARCHeR, AVATAR, Artemis II Standard Measures, and Immune Biomarkers experiments.

      Lunar Observations Campaign

      The Artemis II crew will take advantage of their location to explore the Moon from above. As the first humans to see the lunar surface up close since 1972, they’ll document their observations through photographs and audio recordings to inform scientists’ understanding of the Moon and share their experience of being far from Earth. It’s possible the crew could be the first humans to see certain areas of the Moon’s far side, though this will depend on the time and date of launch, which will affect which areas of the Moon will be illuminated and therefore visible when the spacecraft flies by.

      Spacecraft such as NASA’s Lunar Reconnaissance Orbiter have been surveying and mapping the Moon for decades, but Artemis II provides a unique opportunity for humans to evaluate the lunar surface from above. Human eyes and brains are highly sensitive to subtle changes in color, texture, and other surface characteristics. Having the crew observe the lunar surface directly – equipped with questions that scientists didn’t even know to ask during Apollo missions – could form the basis for future scientific investigations into the Moon’s geological history, the lunar environment, or new impact sites.
      This visualization simulates what the crew of Artemis II might see out the Orion windows on the day of their closest approach to the Moon. It compresses 36 hours into a little more than a minute as it flies the virtual camera on a realistic trajectory that swings the spacecraft around the Moon’s far side. This sample trajectory is timed so that the far side is fully illuminated when the astronauts fly by, but other lighting conditions are possible depending on the exact Artemis II launch date. The launch is scheduled for no later than April of 2026. NASA Goddard/Ernie Wright
      It will also offer the first opportunity for an Artemis mission to integrate science flight control operations. From their console in the flight control room in mission control, a science officer will consult with a team of scientists with expertise in impact cratering, volcanism, tectonism, and lunar ice, to provide real-time data analysis and guidance to the Artemis II crew in space. During the mission, the lunar science team will be located in mission control’s Science Evaluation Room at NASA’s Johnson Space Center in Houston. 

      Lessons learned during Artemis II will pave the way for lunar science operations on future missions.

      CubeSats

      Several additional experiments are hitching a ride to space onboard Artemis II in the form of CubeSats – shoe-box-sized technology demonstrations and scientific experiments. Though separate from the objectives of the Artemis II mission, they may enhance understanding of the space environment.

      Technicians install the Korea AeroSpace Administration (KASA) K-Rad Cube within the Orion stage adapter inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Tuesday, Sept. 2, 2025. The K-Rad Cube, about the size of a shoebox, is one of the CubeSats slated to fly on NASA’s Artemis II test flight in 2026. Credit: NASA Four international space agencies have signed agreements to send CubeSats into space aboard the SLS (Space Launch System) rocket, each with their own objectives. All will be released from an adapter on the SLS upper stage into a high-Earth orbit, where they will conduct an orbital maneuver to reach their desired orbit.

      ATENEA – Argentina’s Comisión Nacional de Actividades Espaciales will collect data on radiation doses across various shielding methods, measure the radiation spectrum around Earth, collect GPS data to help optimize future mission design, and validate a long-range communications link.
      K-Rad Cube – The Korea Aerospace Administration will use a dosimeter made of material designed to mimic human tissue to measure space radiation and assess biological effects at various altitudes across the Van Allen radiation belt.
      Space Weather CubeSat – The Saudi Space Agency will measure aspects of space weather, including radiation, solar X-rays, solar energetic particles, and magnetic fields, at a range of distances from Earth.
      TACHELES – The Germany Space Agency DLR will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.
      Together, these research areas will inform plans for future missions within NASA’s Artemis campaign. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 21 min read
      Summary of the 11th ABoVE Science Team Meeting
      Introduction
      The NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is a large-scale ecological study in the northern regions of North America (Alaska and western Canada) that was developed to understand environmental changes in the region and the implications of those changes for society. Funded primarily by the NASA Terrestrial Ecology Program, this 10-year campaign has included field, airborne, and satellite remote sensing research to address its overarching scientific question of how environmental change in the Arctic and boreal region of western North America will affect vulnerable ecosystems and society.
      ABoVE deployed in three phases: 1) ecosystem dynamics (2015–2018); 2) ecosystem services (2017–2022); and 3) analysis and synthesis (2023–present). Now in the last year of the third phase, the Science Team (ST) consists of 67 active NASA-funded projects with more than 1000 individuals participating. The ABoVE ST has met yearly to discuss the progress of individual teams, plan joint field work, and discuss synthesis activities. ABoVE was featured in a 2019 The Earth Observer article, titled “Summary of the 2019 ABoVE Science Team Meeting” [July–August 2019, Volume 31, Issue 4, pp. 19–22], as well as a 2022 The Earth Observer article, titled “Summary of the Eighth ABoVE Science Team Meeting” [September–October 2022, Volume 34, Issue 5, pp. 28–33].
      Meeting Overview
      The 11th – and final – ABoVE Science Team Meeting (ASTM11) was held May 12–15, 2025, with 96 registered in-person attendees meeting at the University of Alaska, Fairbanks (UAF) and 67 registered virtual attendees – see Photo 1. The meeting included presentations from Phase 3 projects and synthesis reports from thematic working groups (WGs). ABoVE partners, including collaborators [e.g., the Department of Energy’s Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic), Polar Knowledge Canada (POLAR), the Canadian Forest Service (CFS), and the Government of the Northwest Territories (GNWT)] and representatives from upcoming NASA campaigns focusing on the Arctic, shared updates on their activities. Additionally, the meeting featured sessions highlighting cross-project activities, e.g., ABoVE’s participation in regional fire workshops. The meeting also focused on collaborations with the Scotty Creek Research Station in Canada, the many types of science communication activities during ABoVE, and projects conducting collaborative research with community or regional partners.
      Photo 1.The 11th Arctic–Boreal Vulnerability Experiment Science Team (ABoVE) meeting group photo of in-person and virtual participants. Photo credit: Peter Griffith, Leane Kending, and David Stroud The meeting included additional team activities designed to encourage collaboration and understanding between team members. There were opportunities for multiple field trips for in-person attendees, including visits to the Alaska Satellite Facility (ASF) at the Geophysical Institute, the Permafrost Tunnel operated by the Cold Regions Research and Engineering Laboratory (CRREL), the Yankovich Road Fire Interpretive Trail, and the Arctic Research Open House at UAF – see ABove Field Trips section to learn more. The meeting offered early career researchers a chance to receive feedback on their posters and participate in an Early Career lunch event. The meeting even hosted an ABoVE bingo competition, which encouraged attendees to make new scientific and social connections – see Photo 2.
      Photo 2. Scott Goetz [University of Northern Arizona—ABoVE Science Team Lead] poses with ABoVE BINGO winner Wanwan Liang [University of Utah]. Photo credit: Wanwan Liang Meeting Opening
      The first day of the meeting began with a series of opening remarks from the ABoVE leadership team. Peter Griffith [NASA’s Goddard Space Flight Center (GSFC)/Science Systems and Applications, Inc. (SSAI)—Chief Scientist, Carbon Cycle and Ecosystems Office (CCEO)], Scott Goetz [Northern Arizona University (NAU)—ABoVE ST Lead], and Ryan Pavlick [NASA Headquarters (HQ)—ABoVE Program Manager] all noted the significance of this final meeting and discussed the major scientific advances of ABoVE made possible through the dedication of ST members, WG leads, planning committees, and contributors who have made ABoVE a success. Goetz reviewed the meeting goals and objectives:
      receive updates about currently funded projects; receive reports on Thematic WG advances with an emphasis on multiple WG and cross-phase synthesis activities; receive updates on research connections with partners and collaborators; discuss, reflect, and document the history of ABoVE, including major advances, lessons learned, and items to accomplish in the time remaining; and celebrate ABoVE success stories, with advice for potential future NASA large-scale coordinated campaigns. Working Group Presentations and Breakouts
      Throughout the first few days of the meeting, leads for the thematic working groups (WG) presented synthetic overviews of the research efforts of their group members, identified current gaps in planned or completed research, and discussed potential future work. Following these presentations, breakout groups convened to discuss future activities of the WGs. Short summaries of each presentation are available below. Together, these presentations demonstrate the highly interconnected nature of carbon cycles, hydrology, permafrost dynamics, and disturbance regimes in Arctic–boreal ecosystems. The presentations also showcase the substantial ongoing WG efforts to synthesize findings and identify critical knowledge gaps for future research priorities.
      Vegetation Dynamics Working Group
      WG Leads: Matthew Macander [Alaska Biological Research, Inc. (ABR)] and Paul Montesano [GSFC/ADNET Systems Inc.]
      The Vegetation Dynamics WG discussed new advances in understanding Arctic–boreal vegetation structure and function that have been made over the past 10 years through comprehensive biomass maps and multidecadal trend analyses. ABoVE research revealed a critical boreal forest biome shift with greening in nitrogen-rich northern forests and browning in drought-stressed southern forests. The group has identified key knowledge gaps in predicting post-fire vegetation recovery and detecting pervasive declines in vegetation resilience across southern boreal forests. The results suggest higher vulnerability to abrupt forest loss that could dampen the expected increase in carbon sequestration under future climate scenarios.
      Spectral Imaging Working Group
      WG Leads: Fred Huemmrich [GSFC/University of Maryland Baltimore County] and Peter Nelson [Laboratory of Ecological Spectroscopy (LECOSPEC)]
      Over the past year, the Spectral Imaging WG focused on the fundamental scale problem in Arctic ecology, which refers to the mismatch between observation scales and ecological process scales, which span spatial scales from leaf level to larger study areas and temporal scales from minutes to decades. The Airborne Visible/Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) and AVIRIS-3 datasets provide the first broad-area and high-spatial and spectral resolution coverage of high-latitude terrestrial ecosystems. The WG is now completing a scaling synthesis paper and preparing for the new era of data-rich spectral imaging with improved capabilities in data management, machine learning, and modeling applications for high-latitude research.
      Modeling Working Group
      WG Lead: Josh Fisher [Chapman University]
      The Modeling WG aims to reduce model uncertainties in simulations and projections in the Arctic–boreal region across all ABoVE ecosystem indicators. The WG had polled the ST to determine the variables most needed for their Earth system models and is now using the field, airborne, and satellite datasets to better constrain these models. This WG discussed the benefits to the modeling community of transforming the more than 100 ABoVE datasets into a common grid and projection format used by modelers.
      Carbon Dynamics Working Group
      WG Leads: Jonathan Wang [University of Utah] and Jennifer Watts [Woodwell Climate Research Center (WCRC)]
      The Carbon Dynamics WG has focused its recent work on three areas: decadal syntheses of carbon dioxide (CO2) fluxes from eddy covariance towers, machine learning approaches to upscaling wetland and lake methane (CH4) emissions, and carbon flux modeling across the Arctic–boreal zone. The research integrated atmospheric CO2 observations to improve carbon flux estimates and examined wildfire impacts on both carbon emissions and albedo changes. A significant component of the work involved comparing top-down versus bottom-up carbon flux models, with particular attention to permafrost and peatland regions.
      Hydrology-Permafrost-Wetlands Working Group
      WG Leads: Laura Bourgeau-Chavez [Michigan Technological University], David Butman [University of Washington], John Kimball [University of Montana], and Melissa Schwab [University of California, Irvine]
      The Hydrology–Permafrost–Wetlands WG focused on the processes controlling changes in permafrost distribution and properties and their impacts. There was discussion about the nature, causes, and consequences of hydrologic change (e.g. water storage, mobility, and distribution) and about ecosystem water, energy, and carbon cycle linkages. The presenters mentioned integration of ABoVE datasets with NASA satellite missions [e.g., NASA–Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR) and Surface Water and Ocean Topography (SWOT) missions]. WG members discussed the connections between ABoVE research and several crosscutting initiatives, including two NASA Arctic coastlines efforts [e.g., Frontlines Of Rapidly Transforming Ecosystems Earth Venture Suborbital (FORTE EVS) campaign and NASA’s Arctic-COastal Land Ocean InteRactionS (COLORS)] and the WCRC’s Permafrost Pathways.
      Disturbance Working Group
      WG Leads: Dong Chen [University of Maryland, College Park] and Jinhyuk Kim [University of California, Irvine]
      The Disturbance WG leads presented their decade-long perspective on disturbance-related research in the ABoVE domain. The presentation incorporated artificial intelligence (AI)-generated summaries of ABoVE-affiliated research across multiple disturbance types, including boreal wildfires, tundra wildfires, and thermokarst/permafrost degradation processes. Chen and Kim acknowledged the extensive contributions from researchers and WG members while outlining future directions for disturbance research.
      Success Stories
      Four “Success Story” presentations and panels took place during ASTM11, which showcased efforts of ABoVE ST members and the leadership team to create and coordinate engagement efforts that spanned individual projects.
      Success Story 1: ABoVE Participation in Regional Fire Workshops
      A substantial portion of ABoVE research has focused on wildfire, and many members of the ST have participated in domestic and international wildfire efforts, connecting researchers with land managers across Alaska and Canada. Randi Jandt [UAF] discussed the Alaska Fire Science Consortium workshops (held in 2017 and 2022). Jenn Baltzer [Wilfred Laurier University (WLU), Canada] discussed Northwest Territories workshops (held in 2014 and 2025), both of which occurred in response to extreme fire seasons in the region. Laura Bourgeau-Chavez outlined ABoVE’s participation in all of these workshops. The workshops facilitated knowledge exchange and collaboration on critical wildfire management priorities, including fire risk assessment, real-time modeling, post-fire effects, and climate change impacts on fire regimes. Key features included small focus groups, field trips to command centers and fire-affected areas, and integration of Indigenous knowledge with new technologies to inform management practices and climate preparedness strategies.
      Success Story 2: Collaborations with Scotty Creek Research Station (SCRS)
      ASTM11 participants watched the film, “Scotty Creek Research Community – The Spirit of Collaboration,” about the SCRS, Canada’s first and only Indigenous-led research station. Following the film, station team members participated in a panel discussion. Ramona Pearson [Ramona Pearson Consulting, Canada], Maude Auclair [WLU], Mason Dominico [WLU], Michael McPhee [Sambaa K’e First Nation, Canada], and William “Bill” Quinton [WLU] discussed their decade-long collaboration with ABoVE. The partnership involved ABoVE collecting airborne hyperspectral, lidar, and radar imagery, while SCRS researchers provided field data for calibration and validation. In 2022, management of the station transitioned to Łı́ı́dlı̨ı̨ Kų́ę́ First Nation (LKFN, Canada), and ABoVE continued collaborating through knowledge exchange, including with early-career researchers and interns. When a 2022 fire destroyed the field station and surrounding area, ABoVE flew additional flights to capture airborne imagery observations to allow comparison of pre- and post-fire conditions.
      Success Story 3: Science Communication
      During the ABoVE field campaign, ST members and CCEO staff engaged in multiple strategies to communicate research results to the public. The activities included interactive engagement through airborne open houses and guest flights, ST member narratives in the “Notes from the Field” blog posts on the NASA Earth Observatory website, and professional multimedia production, including Earth Observatory content and award-winning videos. This multifaceted strategy demonstrates effective scientific communication through direct public engagement and high-quality, multimedia storytelling, making complex research accessible to diverse audiences.
      Success Story 4: Engagement Activities
      This session highlighted several examples of community engagement across the ABoVE domain. Gerald “J.J.” Frost [ABR] discussed synthesizing ecosystem responses and elder observations in western Alaska for his ABoVE project. In another example, ABoVE researchers from Michigan Tech Research Institute (MTRI) partnered with Ducks Unlimited Canada (DUC) and local organizations. Dana Redhuis [MTRI] and Rebecca Edwards [DUC] described their on-the-land camps that provide hands-on training for Northwest Territories youth in wetlands education and ecological monitoring. Kevin Turner [Brock University, Canada] showcased his work with members of the Vuntut Gwitchin First Nation in Old Crow Flats, Yukon, evaluating how climate and land cover change influence water dynamics and carbon balance. These activities demonstrate collaborative research that integrates Indigenous and Western knowledge approaches to address climate change impacts.
      ABoVE Phase 3 Project Presentations
      Project leads of the 20 NASA-funded ABoVE Phase 3 projects presented updates that were organized by scientific theme. The presentations spanned multiple days of the meeting. Table 1 below provides all the project titles, presenter names, and links to each project and presentation. Science results from four of the presentations are shown in Figures 1–4 below as indicated in the table.
      Table 1. An overview ofABoVE Phase 3 projects and presenters. The Project name includes the last name of the Principal Investigator, NASA funding program (TE for Terrestrial Ecology), the year of the NASA solicitation funding the research, and provides a hyperlink to the Project Profile. A hyperlink to each presentation is provided as either PowerPoint (PPT) file or PDF.
      Project   Carbon Presenter(s) Bloom (TE 2021): Using CO2, CH4 and land-surface constraints to resolve sign and magnitude of northern high latitude carbon-climate feedbacks [PDF] Eren Bilir [NASA/Jet Propulsion Laboratory (JPL)]; Principal Investigator (PI): Alexis (Anthony) Bloom [NASA/Jet Propulsion Laboratory (JPL)] Butman (TE 2021): Do changing terrestrial-aquatic interfaces in Arctic-boreal landscapes control the form, processing, and fluxes of carbon? [PPT] David Butman [University of Washington] – see Figure 1 Watts (TE 2021): Contributions of tundra and boreal systems to radiative forcing in North America and Russia under contemporary and future conditions [PPT] Jennifer Watts [Woodwell Climate Research Center] Miller-S (TE 2021): A synthesis and reconciliation of greenhouse gas flux estimates across the ABoVE domain [PDF] Scot Miller [Johns Hopkins University] Michalak (TE 2021): Quantifying climate sensitivities of photosynthesis and respiration in Arctic and boreal ecosystems from top-down observational constraints [PDF] Wu Sun and Jiaming Wen [both Carnegie Institution for Science, CI]; PI: Anna Michalak, [Carnegie Institution for Science] Fire Presenter(s) Bourgeau-Chavez (TE 2021): Integrating remote sensing and modeling to better understand the vulnerability of boreal-taiga ecosystems to wildfire [PPT] Laura Bourgeau-Chavez [Michigan Technological University (MTU)] Walker (TE 2021): Drivers and Impacts of Reburning in boreal forest Ecosystems (DIRE) [PDF] Jeremy Forsythe [Northern Arizona University (NAU)]; PI: Xanthe Walker [NAU] Wang (TE 2021): Quantifying disturbance and global change impacts on multi-decadal trends in aboveground biomass and land cover across Arctic-boreal North America [PPT] Jonathan Wang [University of Utah]– see Figure 2  Wildlife Presenter(s) Boelman (TE 2021): The future of the Forest-Tundra Ecotone: A synthesis that adds interactions among snow, vegetation, and wildlife to the equation [PPT] Natalie Boelman [Lamont-Doherty Earth Observatory, Columbia University] French (TE 2021): Informing wetland policy and management for waterfowl habitat and other ecosystem services using multi-frequency synthetic aperture radar [PPT] Nancy French [MTU] – see Figure 3 Hydrology / Permafrost Presenter(s) Du (TE 2021): High resolution mapping of surface soil freeze thaw status and active layer thickness for improving the understanding of permafrost dynamics and vulnerability [PPT] Jinyang Du [University of Montana] Miller (TE 2021): Enhanced methane emissions in transitional permafrost environments: An ABoVE phase 3 synthesis investigation [PPT] Charles “Chip” Miller [NASA/JPL] Tape (TE 2021): Characterizing a widespread disturbance regime in the ABoVE domain: Beaver engineering [PPT] Kenneth Tape [University of Alaska, Fairbanks] Zhuang (TE 2021): Role of linked hydrological, permafrost, ground ice, and land cover changes in regional carbon balance across boreal and Arctic landscapes [PDF] Qianlai Zhuang [Purdue University]  Vegetation Structure Presenter(s) Duncanson (TE 2021): Mapping boreal forest biomass recovery rates across gradients of vegetation structure and environmental change [PPT] Paul Montesano [GSFC/ADNET Systems Inc]; PI: Laura Duncanson [University of Maryland]—see Figure 4 Lara (TE 2021): ABoVE-Ground characterization of plant species succession in retrogressive thaw slumps using imaging spectroscopy [PPT] Mark Lara [University of Illinois, Urbana-Champaign]  Vegetation Dynamics  Presenter(s) Frost (TE 2021): Towards a warmer, less frozen future Arctic: Synthesis of drivers, ecosystem responses, and elder observations along bioclimatic gradients in western Alaska [PPT] Gerald “J.J.” Frost [ABR] Goetz (TE 2021): Mapping and modeling attributes of an Arctic-boreal biome shift: Phase-3 applications within the ABoVE domain [PPT] Scott Goetz [NAU] Liu (TE 2021): Characterizing Arctic-boreal vegetation resilience under climate change and disturbances [PPT] Yanlan Liu [The Ohio State University] Townsend (TE 2021): Functional diversity as a driver of gross primary productivity variation across the ABoVE domain [PPT] Philip Townsend [University of Wisconsin] Determining Aboveground Biomass Density Using ICESat-2 Data and Modeling
      Figure 1. Despite their relatively small coverage, surface water extent across boreal and arctic lowlands significantly impacts landscape-scale estimates of carbon emissions. The red points on the map in the figure indicates locations of available lake chemistry data derived from ABoVE-supported research, from collaborators, and from a preliminary literature search. Figure credit. David Butman Figure 2. The Arctic-boreal carbon cycle is inextricably linked to vegetation composition and demography, both of which are being altered by climate change, rising levels of atmospheric carbon dioxide, and climate-induced changes in disturbance regimes. The map in the figure shows above-ground biomass (AGB) change across Arctic-boreal North America (2022–1984) created using a machine learning model of AGB trained on from more than 45,000 field plots and 200,000 km2 of airborne lidar data. Figure credit:  Wanwan Liang Figure 3.  Wetlands provide many ecosystem services, including waterfowl habitat, carbon sequestration, and water quality. Northern wetlands Iin the ABovE study area) are threatened from both land use expansion and climate change disruptions, prompting the need for informed management strategies.  Copernicus Sentinel 1 synthetic aperture radar (SAR) data have been used to create this map of flooding (hydroperiod) in wetland areas around the Great Slave Lake in Canada  The color code on the map corresponds to the number of times the SAR imagery indicated a place was flooded (inundated). Such information is helpful for predicting within-season changes in wetland extent. Figure credit: Nancy French Figure 4. Advances have been made in mapping aboveground biomass density (AGBD). Shown here as an example is an AGBD map created using stata from the   ICESat-2 pan-Boreal 30-m (98-ft) tree height and biomass data product [left] and the ensemble mean of the standard deviation of AGBD, aggregated to modelling tiles [right]. Current research aims to expand these maps and understand regional vegetation changes.  Figure credit. Laura Duncanson/data from ORNL DAAC ASTM11 Poster Sessions
      ASTM11 featured 41 research posters across three sessions, organized by thematic area – see Table 3 and Photo 3. The Poster Session agenda details the range of topics that spanned airborne synthetic aperture radar (SAR) and satellite imagery to northern ecosystem fieldwork. Key research topics that emerged included CO2 and CH4 emissions from terrestrial and aquatic systems, ongoing permafrost thaw, fire impacts on carbon cycling, vegetation mapping and biomass estimation, and the impacts of wildlife on the landscape.
      Table 2. A breakdown of ASTM11 poster presentations by science theme.
      Poster Theme Poster Count Carbon Dynamics 5 Crosscutting, Modeling, or Other 6 Fire Disturbance 5 Permafrost, Hydrology, and Wetlands 13 Vegetation Dynamics and Distribution 7 Vegetation Structure and Function 4 Wildlife and Ecosystem Services 1 Photo 3. Poster presentations and sessions during ASTM11 offered opportunities for presenters to share their latest research findings with meeting participants. Photo credit: Elizabeth Hoy ABoVE Field Trips
      ASTM11 offered multiple field trip options across the Fairbanks region of Alaska. The fieldtrips provided ST members an opportunity to interact with the research community – see Photo 4.
      Trip to Alaska Satellite Facility (ASF) and Geophysical Institute
      ASF is a data archive for many SAR datasets from a variety of sensors and has multiple ground station facilities. During the tour, participants visited the ASF operations room and ASF rooftop antenna. The Geophysical Institute tour also featured the Alaska Earthquake Center, Wilson Alaska Technical Center, and Alaska Center for Unmanned Aircraft Systems Integration.
      Trip to Cold Regions Research and Engineering Laboratory (CRREL) Permafrost Tunnel
      The U.S. Army Core of Engineers CRREL Permafrost Tunnel is located in Fox, AK – about 15 km (9 mi) north of Fairbanks. Over 300 m (984 ft) of tunnel have been excavated, exposing Pleistocene ice and carbon-rich yedoma permafrost that ranges in age from 18,000 to 43,000 years old. The tunnel exposes mammoth and bison bones and a variety of permafrost soils. Ongoing projects in the tunnel cover a range of topics, including engineering and geophysical work, Mars analog studies, and biogeochemistry and microbiology of permafrost soils.
      Wildfire Walk: Yankovich Road Fire Interpretive Trail
      On July 11, 2021, a wildfire burned 3.5 acres (14,164 m2) of UAF land. In 2024, the UAF Alaska Fire Science Consortium, Bureau of Land Management Alaska Fire Service, and local artist Klara Maisch collaborated with others to develop the Wildfire Walk at the site. The interpretive trail is an outdoor learning experience with interpretive wayside markers that describe the fire incident, the relationship between wildfire and the boreal forest, fire science and environmental change, and wildfire prevention – see Figure 1.
      UAF Arctic Research Open House
      The UAF Arctic Research Open House was an opportunity for ST members and the public to explore the wide range of research happening at UAF and meet other scientists. ABoVE hosted an information table at the event.
      Photo 4: Collage of images collected during a series of field trips, including [top] the Wildfire Walk along the Alaska Fire Science Consortium, [middle] the Permafrost Tunnel with Tom Douglas [Cold Regions Research and Engineering Laboratory], [bottom left] UAF Arctic Open House ABoVE Table with Margaret “Maggie” Wooton [NASA’s Goddard Space Flight Center (GSFC)/Science System and Applications, Inc. (GSFC/SSAI)], Elizabeth Hoy [GSFC/Global Science & Technology Inc.], and Qiang Zhou [GSFC/SSAI], talking with Logan Berner [Northern Arizona University], [bottom right] the Alaska Satellite Facility ground receiving antenna. Photo credit: Elizabeth Hoy Research Connections
      The success of ABoVE as a large-scale research study over the Arctic and boreal regions within and outside the United States depended on collaboration with multiple organizations. Many of the ABoVE collaborators were able to present at ASTM11.
      Andrew Applejohn [Polar Knowledge Canada (POLAR)] provided details about the scope, mandate, and facilities available through POLAR, a Canadian government agency that has partnered with the ABoVE ST for the duration of the campaign.
      Ryan Connon [Government of the Northwest Territories (GNWT)] discussed the decade-long collaboration between ABoVE and the GNWT, including knowledge sharing of wildlife collar data, field-data ground measurements, and remote sensing analyses.
      Gabrielle Gascon [Canadian Forest Service (CFS), Natural Resources Canada] explained the scope of Canada’s National Forest Inventory and the current CFS focus on wildfire and the CFS’s other areas of research related to the northern regions. Another presentation featured information about various vegetation mapping initiatives where Matthew Macander discussed an Alaska-based effort called AKVEG Map, a vegetation plot database, and Logan Berner [NAU] detailed a pan-Arctic plant aboveground biomass synthesis dataset.
      Brendan Rogers [WCRC] showcased research from Permafrost Pathways, designed to bring together permafrost-related science experts with local communities to inform Arctic policy and develop adaptation and mitigation strategies to address permafrost thaw. NGEE-Arctic is another U.S. government effort that partnered specifically with ABoVE for the duration of the two efforts, and Bob Bolton [Oak Ridge National Laboratory (ORNL)] provided updates on the project.
      Tomoko Tanabe [Japan’s National Institute of Polar Research (JNIPR)] gave a presentation about NIPR to better inform ABoVE scientists about other international Arctic efforts, including a new Japanese Arctic research initiative called the Arctic Challenge for Sustainability III (ArCS III), designed to address social issues related to environmental and social changes in the Arctic.
      Additional Presentations
      An additional presentation aimed to keep the ABoVE ST informed of future NASA Arctic research efforts. Kelsey Bisson [NASA HQ—Program Scientist for the Ocean Biology and Biogeochemistry Program] discussed NASA Arctic-COLORS and Maria Tzortziou [City University of New York/Columbia University, LDEO] discussed the FORTE EVS campaign. The proposed Arctic-COLORS field campaign would quantify the biogeochemical and ecological response of Arctic nearshore systems to rapid changes in terrestrial fluxes and ice conditions. The NASA FORTE EVS campaign will fill a critical gap in understanding Alaska’s northernmost ecosystems by investigating eroding coastlines, rivers, deltas, and estuaries that connect land and sea systems, using airborne platforms.
      Scott Goetz continued with a presentation on U.S. efforts to plan the International Polar Year, scheduled for 2032–2033. Ryan Pavlick provided details on the NISAR mission, which launched after the meeting on July 30, 2025, and discussed other possible future NASA missions.
      A Career Trajectory panel featured Jennifer Watts, Jonathan Wang, Brendan Rogers, and Xiaoran “Seamore” Zhu [Boston University]. The panelists discussed opportunities for researchers from different academic backgrounds and at different career stages, and they provided details about how ABoVE has impacted their careers. They also discussed how NASA campaigns offer opportunities for early career scientists to join a team of peers to grow their abilities throughout the duration of the decade-long research.
      Klara Maisch, a local artist, discussed her work creating science-informed artwork through interdisciplinary collaborations with scientists and other creators – see Figure 5. Maisch described the benefits of partnering with artists to share science with a broad audience and showcased artwork she has created.
      Figure 5. Lower Tanana Homelands – 2022 Yankovich Fire – Plot Painting [left], with original plot reference photograph [right]. Image Credit: Klara Maisch Overarching Presentations
      A series of presentations on the overall structure and outcomes of ABoVE were held during ASTM11. Charles “Chip” Miller [NASA/JPL—Deputy ABoVE ST Lead, ABoVE Airborne Lead] provided details about SAR, hyperspectral, and lidar airborne measurements collected between 2017 and 2024 for the ABoVE Airborne Campaign.
      ABoVE Logistics Office members Daniel Hodkinson [GSFC/SSAI], Sarah Dutton [GSFC/SSAI], and Leanne Kendig [GSFC/Global Science & Technology, Inc. (GST, Inc.)] discussed the many field teams and activities supported during ABoVE. Overall, more than 50 teams were trained in field safety topics, with more than 1,200 training certificates awarded. Elizabeth Hoy [NASA GSFC/GST, Inc.] and Debjani Singh [ORNL] discussed the more than 250 data products developed during the ABoVE program and how to access them through NASA Earthdata. Example visualizations of ABoVE data products can be found in Figure 6.
      Figure 6. ABoVE logo created with different data products from the campaign used to compose each letter.A: Active Layer Thickness from Remote Sensing Permafrost Model, Alaska, 2001-2015;. Tree (inside A): Normalized Difference Vegetation Index (NDVI) Trends across Alaska and Canada from Landsat, 1984-2012;. B: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014;; O: Wildfire Carbon Emissions and Burned Plot Characteristics, NWT, CA, 2014-2016;; V: AVHRR-Derived Forest Fire Burned Area-Hot Spots, Alaska and Canada, 1989-2000;; E: Lake Bathymetry Maps derived from Landsat and Random Forest Modeling, North Slope, AK; and Underline (under O): Plot lines from the ABoVE Planning Tool visualizer. Figure credit: Caitlin LaNeve The Collaborations and Engagement WG held a plenary discussion to highlight the many activities that ABoVE researchers have been involved in over the past decade. The discussion highlighted the need for individual projects and campaign leadership to work together to ensure participation and understanding of planned research at local and regional levels.
      A highlight of the meeting was the “Legacy of ABoVE” panel discussion moderated by Nancy French [MTU]. Panelists included Eric Kasischke [MTU], Scott Goetz, Chip Miller, Peter Griffith, Libby Larson [NASA GSFC/SSAI], and Elizabeth Hoy. Each panelist reflected on their journey to develop ABoVE, which included an initial scoping study developed more than 15 years ago. Members of the panel – all a part of the ABoVE leadership team – joined the campaign at different stages of their career. Each panelist arrived with different backgrounds, bringing their unique perspective to the group that helped to frame the overall campaign development. Following the panel, all ST members who have been a part of ABoVE since its start over a decade ago came to the front for a group photo – see Photo 5.
      Following the panel, the ABoVE ST leads presented their overall thoughts on the meeting and facilitated a discussion with all participants at the meeting. Participants noted the important scientific discoveries made during ABoVE and enjoyed the collegial atmosphere during ASTM11.
      Photo 5. A group photo of participants who have been with ABoVE since its inception: [left to right] Ryan Pavlick, Chip Miller, Elizabeth Hoy, Libby Larson, Peter Griffith, Fred Huemmrich, Nancy French, Scott Goetz, Laura Bourgeau-Chavez, Eric Kasischke, and Larry Hinzman. Photo credit: Peter Griffith Conclusion 
      Overall, ASTM11 brought together an interdisciplinary team for a final team meeting that showcased the many accomplishments made over the past decade. The group outlined current gaps and needs in Arctic and boreal research and discussed possibilities for future NASA terrestrial ecology campaigns. The synthesis science presentations at ASTM11 highlighted the advances ABoVE has made in understanding carbon and ecosystem dynamics in Arctic and boreal regions. It also highlighted the need for further study of cold season and subsurface processes. While this was the last meeting of this ST, research for some projects will continue into 2026, and more publications and data products are expected from ST members in the near term.
      Elizabeth Hoy
      NASA’s Goddard Space Flight Center/Global Science & Technology Inc. (GSFC/GST,Inc.)
      elizabeth.hoy@nasa.gov
      Libby Larson
      NASA’s Goddard Space Flight Center/Science System and Applications, Inc. (GSFC/SSAI)
      libby.larson@nasa.gov
      Annabelle Sokolowski
      NASA GSFC Office of STEM Engagement (OSTEM) Intern
      Caitlin LaNeve
      NASA GSFC Office of STEM Engagement (OSTEM) Intern
      Share








      Details
      Last Updated Sep 10, 2025 Related Terms
      Earth Science View the full article
  • Check out these Videos

×
×
  • Create New...