Jump to content

Annual Highlights of Results 2024: Key Takeaways, Introduction, and Bibliometric Analyses


Recommended Posts

  • Publishers
Posted
rodent-research-28-jsc2023e054752.jpg?w=
Rodent Research-28 fluorescein angiogram of the microvascular circulation of the mouse retina.
Image courtesy: Oculogenex Inc.

Key Takeaways

  • A total of 361 publications were collected in FY-24. These publications include peer-reviewed scientific studies or other literature such as books and patents published recently or years prior. More than 80% of the publications collected in FY-24 were from research sponsored by NASA and JAXA.
  • In FY-24, the predominant area of study for publications was Earth and Space science. The results obtained were primarily generated via Derived Results, studies that retrieve open data from online sources to make new discoveries. These Derived publications indicate a 39% return on investment.
  • A total of 4,438 publications have been gathered since the beginning of station, and about 16% of this literature has been published in top-tier journals.
  • The year-over-year growth of top-tier publications has been greater than the growth of regular publications. In 13 years, there was a  22% growth of top-tier publications and a 0.47% growth of regular publications.
  • Almost 80% of top-tier results have been published in the past seven years.
  • Station research continues to surpass national and global standards of citation impact.
  • This year, a simplified hierarchy map showing the nested categories of station disciplines, subdisciplines, and selected keywords is presented to represent the more than 15,000 topic key words generated by the studies.
  • Station research has seen a remarkable growth of international collaboration since its first days of assembly in 1999. Currently, about 40% of the research produced by station is the result of a collaboration between two or more countries.
  • To date, the United States has participated in 23% of international collaborations.
  • Of the nearly 4,000 investigations operated on station since Expedition 0, approximately 59% are identified as completed. From this subset of completed investigations, studies directly conducted on station rather than Derived Results have produced the most scientific results. This pattern differs from analyses conducted with all publication data.

Introduction

The International Space Station is a state-of-the art laboratory in low Earth orbit. Since the year 2000, distinguished researchers from a myriad of disciplines around the world have been sending equipment and investigations to station to learn how space-related variables affect the human body, plant and microbial life, physical processes, equipment function, and more. Sophisticated remote sensing techniques and telescopes attached to station also observe the Earth and the universe to enhance our understanding of weather patterns, biomass changes, and cosmic events.

Investigations can be operated remotely from Earth with ground control support, directly on station with the help of crew members, or autonomously (without human assistance). The most recent science conducted on station has engaged private astronauts to advance the research endeavors of the commercial sector. The improvement of these science operations (i.e., how data is collected and returned) has led to more reliable scientific results. Additionally, extensive domestic and international collaboration bridging academic institutions, corporations, and funding agencies has produced high quality and impactful research that inspires new generations of students, researchers, and organizations looking to solve problems or innovate in emerging fields.

The studies highlighted in this report are only a small, representative sample of the research conducted on station in the past 12 months. Many more groundbreaking findings were reported in fiscal year 2024 (FY- 24), including:

  • Plant adaptation through the adjustment of regulatory proteins, which can lead to sustainable food production on the Moon and Mars (BRIC-LED-001).
  • A connection between downregulated mitochondrial gene pathways and neurotransmitter signaling dysfunction that could assist the development of new pharmaceutical or nutritional therapies to prevent strength loss in neuromuscular disorders. (Microbial Observatory-1).
  • The precise measurement of hydrogen isotopes to provide a better assessment of dark matter (AMS-02).
  • The adaptation of a permanent flow cytometer in space that enables the examination of blood counts, hormones, enzymes, nucleic acids, proteins, and biomarkers to assess crew health in real time (rHEALTH).
  • The behavior of oil-in-water drops in microgravity (i.e., oil drops grow over time, but drop displacement decreases). Understanding the behavior of oils, dyes, and detergents can lead to a safer environment and sustainability of emulsion technologies in the food, pharmaceutical, paint, and lubrication industries (FSL Soft Matter Dynamics-PASTA).

Fundamental and applied research conducted on station improves the state of scientific understanding. Whether it is through the examination of microgravity and radiation effects, or through the testing of countermeasures, new materials, and computing algorithms; the hard work of integrating flight operations with scientific objectives is carried out to protect our planet, improve our health, and learn more about our place in the universe.

The following pages aim to demonstrate how station is revolutionizing science through cooperation, curiosity, and ingenuity. Projects that may have begun as simple ideas are now shaping the way we think about and operate in space to advance our goal of going to the Moon and beyond.

Moghbeli, wearing a dark blue hooded sweatshirt, smiles at the camera. Next to her is an open, cube-shaped plant growth facility, with small tomato seedlings growing in multiple rows on the bottom. Multiple hoses and cords are visible on the back and sides of the facility, which is brightly lit.
NASA astronaut and Expedition 70 Flight Engineer Jasmin Moghbeli poses in front of the Kibo laboratory module’s Advanced Plant Habitat housing tomato plants for an experiment investigating how the plant immune system adapts to spaceflight and how spaceflight affects plant production. NASA ID: iss070e073612.
Credits: NASA

Bibliometric Analyses: Measuring Space Station Impacts

Literature associated with space station research results (e.g., scientific journal articles, books, patents) is collected, curated, and linked to investigations. The content from these publications is classified based on how the results are obtained. The current classifications are:

  • Flight Preparation Results – publications about the development work performed for an investigation or facility prior to operation on space station.
  • Station Results – publications that provide information about the performance and results of an investigation or facility as a direct implementation on station or on a vehicle to space station.
  • Derived Results – publications that use open data from an investigation that operated on station. Access to raw data for new researchers expands global knowledge and scientific benefits.
  • Related – publications that indirectly lead to the development of an investigation or facility. To date, over 2,200 publications have been identified as Related. This count of Related publications is not included in the analyses presented in this report.

Projects taking place on station (facilities or investigations) are assigned to one of six science disciplines:

  • Biology and Biotechnology: Includes plant, animal, cellular biology, habitats, macromolecular crystal growth, and microbiology.
  • Earth and Space Science: Includes astrophysics, remote sensing, near-Earth space environment, astrobiology, and heliophysics.
  • Educational and Cultural Activities: Includes student-developed investigations and competitions.
  • Human Research: Includes crew healthcare systems, all human-body systems, nutrition, sleep, and exercise.
  • Physical Science: Includes combustion, materials, fluid, and fundamental physics.
  • Technology Development and Demonstration: Includes air, water, surface, and radiation monitoring, robotics, small satellites and control technologies, and spacecraft materials.

Facilities consist of the infrastructure and equipment on station that enable the research to be conducted (e.g., workstation “racks” containing power, data and thermal control, furnaces, crystallization units, animal and plant habitats). Investigations are research projects with one or multiple science objectives. Investigations may use a facility to execute the experiments. A publicly accessible database of space station investigations, facilities, and publications can be found in the Space Station Research Explorer (SSRE) website. Through bibliometric analyses, the examination of publications and citations in different categories, we learn about research productivity, quality, collaboration, and impact. These measurements allow our organization to identify trends in research growth to better plan and support new scientific endeavors. The analyses included in this report serve to answer questions related to fiscal year data and total publication data to promote research accountability and integrity and ensure benefits to humanity.

Station research produced in FY-2024

Between Oct. 1, 2023, and Sept. 30, 2024, we identified a total of 361 publications associated with station research. Of these 361 publications, 52 were published in Biology and Biotechnology, 176 in Earth and Space, 5 in Educational and Cultural Activities, 40 in Human Research, 56 in Physical Science, and 32 in Technology Development and Demonstration. This publication count broken out by research discipline and space agency is shown in Figure 1A. Of the 361 publications, 41 were classified as Flight Preparation Results, 178 as Station Results, and 140 as Derived Results. Because Derived Results are new scientific studies generated from shared data, derived science is an additional return on the investment entrusted to station. In FY-24, this return on investment was 39%; a 12% increase from FY-23. Figure 1B shows this publication data broken out by research discipline and publication type.

Bar graph depicting Figure 1A. A total of 361 publications were collected in FY-24. Over 80% of the publications reported results in Earth and Space, primarily from investigations associated with NASA and JAXA research.
Figure 1A. A total of 361 publications were collected in FY-24. Over 80% of the publications reported results in Earth and Space, primarily from investigations associated with NASA and JAXA research.
Bar graph showing Figure 1B, a total of 361 publications were collected in FY-24. Most publications in Earth and Space came from Derived Results associated with NASA and JAXA research. These Derived Results demonstrate a return on investment of 39%, a 12% increase from FY-23.
Figure 1B, A total of 361 publications were collected in FY-24. Most publications in Earth and Space came from Derived Results associated with NASA and JAXA research. These Derived Results demonstrate a return on investment of 39%, a 12% increase from FY-23.

Overall growth, quality, impact, and diversity of station research

Growth: A total of 4,438 publications have been collected since station began operations with 176 publications (4%) from work related to facilities on station. In Figure 2A, we show the growth of both regular and top-tier science over the years. Top-tier publications are studies published in scientific journals ranked in the top 100 according to ClarivateTM (Web of ScienceTM)1, a global database that compiles readership and citation standards to calculate a journal’s Eigenfactor Score2 and ranking. Regular publications include literature published in sources that may be specific to microgravity research but are not ranked.

Our data shows that over a 13-year period from 2011 to 2023, regular publications grew 0.47% per year and top-tier publications grew 22% per year. Some of the subdisciplines that have experienced most growth from station research are astrophysics (707 publications), Earth remote sensing (266 publications), fluid physics (245 publications), and microbiology (214 publications).

Quality: About 16% of station results have been published in top-tier journals. However, in Figure 2B we zoom in to examine the growth of top-tier publications given their station science discipline, showing that almost 80% of top-tier research has been published in the past seven years. Currently, a total of 696 articles have been published in top-tier journals and about 53% of this total are Derived Results from Earth and Space science investigations.

Bar graph showing Figure 2A. Growth of regular and top-tier research publications over time. About 16% of station results have been published in top-tier journals. Inset shows the growth of microgravity- and non-microgravity-specific sources used in regular publications.
Figure 2A. Growth of regular and top-tier research publications over time. About 16% of station results have been published in top-tier journals. Inset shows the growth of microgravity- and non-microgravity-specific sources used in regular publications.
ahr-2024-top-100-journals-animated-20250
Figure 2B. Growth of top-tier research publications by station research discipline (n = 696). There has been a significant
increase of top-tier articles published since 2018, with a little over 50% emerging from Derived Results in Earth and Space
science. Table inset shows the top-tier journals with most station research published.

Impact: Previous analyses have demonstrated that the citation impact of station research has superseded national and global standards since 2011 (See Annual Highlights of Results FY-2023). This pattern continues today.

Diversity: Station science covers six major science disciplines, 73 subdisciplines, and thousands of topic keywords within each subdiscipline. A precise visualization of such abundant diversity would be overwhelming and impenetrable. However, plotting a few topic keywords within each sub-discipline succinctly shows the breadth of science station has to offer (Figure 3). For a better appreciation of station’s diversity, see the interactive hierarchy diagram online. Note that some topics, such as radiation, are studied from multiple perspectives (e.g., radiation measurement through physical science, radiation effects through human research, and shielding through technology development). Topic keywords were obtained using ClarivateTM (Web of ScienceTM).1

Station research collaboration

Previous analyses have shown the growth of collaboration between countries throughout the years based on co-authorship (See Annual Highlights of Results FY-2023). In a new analysis conducted with country data obtained through Dimensions.ai3 (n = 3,309 publications), we calculated that about 40% of the publications produced from station research are collaborations between several countries, and about 60% are intercollegiate collaborations within individual countries. As seen in the space agency networks in Figure 4, the United States participates in approximately 23% of the collaborations with other countries, making it the most collaborative country.

5 different colored wire diagrams depicting Figure 4: Country collaboration in station research based on publication co-authorship. Networks include up to five countries collaborating in an investigation. Nodes and links from countries that published their research independently are not included.
Figure 4: Country collaboration in station research based on publication co-authorship. Networks include up to five countries collaborating in an investigation. Nodes and links from countries that published their research independently are not included.

From research ideas to research findings

Nearly 4,000 investigations have operated since Expedition 0; with a subset of 2,352 investigations (approximately 59%) marked as complete. These completed investigations have concluded their science objectives and reported findings. In Figure 5, we show the citation output from publications exclusively tied to completed investigations. In this Sankey diagram, Times Cited corresponds to the count of publications with at least one citation in each publication type (Station Results, Flight Preparation Results, and Derived Results). This citation count adequately parallels the total number of citations per publication and allows the visualization of a comprehensible chart. This analysis demonstrates that most completed investigations have reported results directly from studies conducted on station, followed by studies conducted in preparation to go to space, and finally by studies derived from open science available online. Likewise, results obtained straight from station receive more citations (e.g, over 46,000) than Flight Preparation (3,636 citations) or Derived results (936 citations). This pattern differs from analyses including all publication data in Figures 1 and 2.

Linking Space Station Benefits

Space station research results lead to benefits for human exploration of space, benefits to humanity, and the advancement of scientific discovery. This year’s Annual Highlights of Results from the International Space Station includes descriptions of just a few of the results that were published from across the space station partnership during the past year.

  • EXPLORATION: Space station investigation results have yielded updated insights into how to live and work more effectively in space by addressing such topics as understanding radiation effects on crew health, combating bone and muscle loss, improving designs of systems that handle fluids in microgravity, and determining how to maintain environmental control efficiently.
  • DISCOVERY: Results from the space station provide new contributions to the body of scientific knowledge in the physical sciences, life sciences, and Earth and space sciences to advance scientific discoveries in multi-disciplinary ways.
  • BENEFITS FOR HUMANITY: Space station science results have Earth-based applications, including understanding our climate, contributing to the treatment of disease, improving existing materials, and inspiring the future generation of scientists, clinicians, technologists, engineers, mathematicians, artists, and explorers.
text-colored data driven word cloud for AHR 2024

References

1Journal ranking and Figure 5 data were derived from ClarivateTM (Web of ScienceTM). © Clarivate 2024. All rights reserved.

2West JD, Bergstrom TC, Bergstrom CT. The Eigenfactor MetricsTM: A Network approach to assessing scholarly journals. College and Research Libraries. 2010;71(3). DOI: 10.5860/0710236.

3Digital Science. (2018-) Dimensions [Software] available from https://app.dimensions.ai. Accessed on October 10, 2024, under license agreement.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:00:00 ESA’s state-of-the-art Biomass satellite launched aboard a Vega-C rocket from Europe’s Spaceport in Kourou, French Guiana. The rocket lifted off on 29 April 2025 at 11:15 CEST (06:15 local time).
      In orbit, this latest Earth Explorer mission will provide vital insights into the health and dynamics of the world’s forests, revealing how they are changing over time and, critically, enhancing our understanding of their role in the global carbon cycle. It is the first satellite to carry a fully polarimetric P-band synthetic aperture radar for interferometric imaging. Thanks to the long wavelength of P-band, around 70 cm, the radar signal can slice through the whole forest layer to measure the ‘biomass’, meaning the woody trunks, branches and stems, which is where trees store most of their carbon.
      Vega-C is the evolution of the Vega family of rockets and delivers increased performance, greater payload volume and improved competitiveness.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s annual Student Launch challenge will bring middle school, high school, and college students from around the country together to launch high-powered rockets and payloads. On Saturday, May 3, from 8:30 a.m.-2:30 p.m. CDT (or until the last rocket launches), student teams will convene for the agency’s 25th annual challenge at Bragg Farms in Toney, Alabama, near NASA’s Marshall Space Flight Center in Huntsville. 
      Hundreds of students from across the U.S. and Puerto Rico launched amateur rockets near NASA’s Marshall Space Flight Center in Huntsville, Alabama, during the Agency’s 2024 Student Launch competition. NASA Live streaming will begin at 8:20 a.m. CDT on NASA Marshall YouTube.
      Media interested in covering Student Launch events should contact Taylor Goodwin at 938-210-2891.
      Winners will be announced June 9 during a virtual awards ceremony once all teams’ flight data has been verified.
      Seventy-one teams participated this year; 47 teams are expected to launch in-person. Teams not traveling to Alabama are allowed to conduct final test flights at a qualified launch field near them.
      Schedule of Events:
      Rocket Fair: Friday, May 2, 2025, 3-6 p.m. at the Von Braun Center East Hall.
      A free event for the public to view rockets and meet the student teams.
      Launch Day: Saturday, May 3, 2025, gates open at 7 a.m. and the event runs from 8:30 a.m.-2:30 p.m. (or until last rocket launch) at Bragg Farms, in Toney, Alabama. This is a free public event with live rocket launches. Please be weather aware. Lawn chairs are recommended. Pets are not permitted.
      Back-up Launch Day: Sunday, May 4, 2025, is reserved as a back-up launch day in case of inclement weather. If needed, the event will run from 8:30 a.m. to 2:30 p.m. (or until last rocket launches) at Bragg Farms.
      About the Competition
      Student Launch provides relevant, cost-effective research and development of rocket propulsion systems and reflects the goals of NASA’s Artemis Program, which will establish the first long-term presence on the Moon and pave the way for eventual Mars missions.
      Each year, the payload component changes to reflect current NASA missions. As Student Launch celebrates its 25th anniversary, the payload challenge will include “reports” from STEMnauts, non-living objects representing astronauts. The STEMnaut “crew” must relay real-time data to the student team’s mission control, just as the Artemis astronaut crew will do as they explore the lunar surface.  
      Eligible teams compete for prizes and awards and are scored in nearly a dozen categories including safety, vehicle design, social media presence, and science, technology, engineering, and math (STEM) engagement.
      Marshall’s Office of STEM Engagement hosts Student Launch to encourage students to pursue careers in STEM through real-world experiences. Student Launch is a part of the agency’s Artemis Student Challenges– a variety of activities exposing students to the knowledge and technology required to achieve the goals of the Artemis missions.
      In addition to the NASA Office of STEM Engagement’s Next Gen STEM project, NASA Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and Bastion Technologies provide funding and leadership for the competition.
      For more information about Student Launch, please visit:
      https://www.nasa.gov/learning-resources/nasa-student-launch/
      Taylor Goodwin 
      NASA’s Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      taylor.goodwin@nasa.gov
      Facebook logo @NASAStudentLaunch @StudentLaunch Instagram logo @NASA_Marshall Share
      Details
      Last Updated Apr 29, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center For Colleges & Universities Learning Resources Explore More
      4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 5 days ago 6 min read NASA Tests Key Spacesuit Parts Inside This Icy Chamber
      Article 5 days ago 6 min read Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership
      At Norfolk Technical Center in Norfolk, Virginia, carpentry students in Jordan Crawford’s first-year class aren’t…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An astronaut glove designed for International Space Station spacewalks is prepped for testing in a chamber called CITADEL at NASA JPL. Conducted at temperatures as frigid as those Artemis III astronauts will see on the lunar South Pole, the testing supports next-generation spacesuit development.NASA/JPL-Caltech Engineers with NASA Johnson and the NASA Engineering and Safety Center ready an astronaut glove for insertion into the main CITADEL chamber at JPL. The team tested the glove in vacuum at minus 352 degrees Fahrenheit (minus 213 degrees Celsius).NASA/JPL-Caltech A JPL facility built to support potential robotic spacecraft missions to frozen ocean worlds helps engineers develop safety tests for next-generation spacesuits.
      When NASA astronauts return to the Moon under the Artemis campaign and eventually venture farther into the solar system, they will encounter conditions harsher than any humans have experienced before. Ensuring next-generation spacesuits protect astronauts requires new varieties of tests, and a one-of-a-kind chamber called CITADEL (Cryogenic Ice Testing, Acquisition Development, and Excavation Laboratory) at NASA’s Jet Propulsion Laboratory in Southern California is helping.
      Built to prepare potential robotic explorers for the frosty, low-pressure conditions on ocean worlds like Jupiter’s frozen moon Europa, CITADEL also can evaluate how spacesuit gloves and boots hold up in extraordinary cold. Spearheaded by the NASA Engineering and Safety Center, a glove testing campaign in CITADEL ran from October 2023 to March 2024. Boot testing, initiated by the Extravehicular Activity and Human Surface Mobility Program at NASA’s Johnson Space Center in Houston, took place from October 2024 to January 2025.

      An astronaut boot — part of a NASA lunar spacesuit prototype, the xEMU — is readied for testing in JPL’s CITADEL. A thick aluminum plate stands in for the cold surface of the lunar South Pole, where Artemis III astronauts will confront conditions more extreme than any humans have yet experienced.NASA/JPL-Caltech In coming months, the team will adapt CITADEL to test spacesuit elbow joints to evaluate suit fabrics for longevity on the Moon. They’ll incorporate abrasion testing and introduce a simulant for lunar regolith, the loose material that makes up the Moon’s surface, into the chamber for the first time.
      “We’ve built space robots at JPL that have gone across the solar system and beyond,” said Danny Green, a mechanical engineer who led the boot testing for JPL. “It’s pretty special to also use our facilities in support of returning astronauts to the Moon.”
      Astronauts on the Artemis III mission will explore the Moon’s South Pole, a region of much greater extremes than the equatorial landing sites visited by Apollo-era missions. They’ll spend up to two hours at a time inside craters that may contain ice deposits potentially important to sustaining long-term human presence on the Moon. Called permanently shadowed regions, these intriguing features rank among the coldest locations in the solar system, reaching as low as minus 414 degrees Fahrenheit (minus 248 degrees Celsius). The CITADEL chamber gets close to those temperatures.
      Engineers from JPL and NASA Johnson set up a test of the xEMU boot inside CITADEL. Built to prepare potential robotic explorers for conditions on ocean worlds like Jupiter’s moon Europa, the chamber offers unique capabilities that have made it useful for testing spacesuit parts.NASA/JPL-Caltech “We want to understand what the risk is to astronauts going into permanently shadowed regions, and gloves and boots are key because they make prolonged contact with cold surfaces and tools,” said Zach Fester, an engineer with the Advanced Suit Team at NASA Johnson and the technical lead for the boot testing.
      Keeping Cool
      Housed in the same building as JPL’s historic 10-Foot Space Simulator, the CITADEL chamber uses compressed helium to get as low as minus 370 F (minus 223 C) — lower than most cryogenic facilities, which largely rely on liquid nitrogen. At 4 feet (1.2 meters) tall and 5 feet (1.5 meters) in diameter, the chamber is big enough for a person to climb inside.
      An engineer collects simulated lunar samples while wearing the Axiom Extravehicular Mobility Unit spacesuit during testing at NASA Johnson in late 2023. Recent testing of existing NASA spacesuit designs in JPL’s CITADEL chamber will ultimately support de-velopment of next-generation suits being built by Axiom Space.Axiom Space More important, it features four load locks, drawer-like chambers through which test materials are inserted into the main chamber while maintaining a chilled vacuum state. The chamber can take several days to reach test conditions, and opening it to insert new test materials starts the process all over again. The load locks allowed engineers to make quick adjustments during boot and glove tests.
      Cryocoolers chill the chamber, and aluminum blocks inside can simulate tools astronauts might grab or the cold lunar surface on which they’d walk. The chamber also features a robotic arm to interact with test materials, plus multiple visible-light and infrared cameras to record operations.
      Testing Extremities
      The gloves tested in the chamber are the sixth version of a glove NASA began using in the 1980s, part of a spacesuit design called the Extravehicular Mobility Unit. Optimized for spacewalks at the International Space Station, the suit is so intricate it’s essentially a personal spacecraft. Testing in CITADEL at minus 352 F (minus 213 C) showed the legacy glove would not meet thermal requirements in the more challenging environment of the lunar South Pole. Results haven’t yet been fully analyzed from boot testing, which used a lunar surface suit prototype called the Exploration Extravehicular Mobility Unit. NASA’s reference design of an advanced suit architecture, this spacesuit features enhanced fit, mobility, and safety.
      In addition to spotting vulnerabilities with existing suits, the CITADEL experiments will help NASA prepare criteria for standardized, repeatable, and inexpensive test methods for the next-generation lunar suit being built by Axiom Space — the Axiom Extravehicular Mobility Unit, which NASA astronauts will wear during the Artemis III mission.
      “This test is looking to identify what the limits are: How long can that glove or boot be in that lunar environment?” said Shane McFarland, technology development lead for the Advanced Suit Team at NASA Johnson. “We want to quantify what our capability gap is for the current hardware so we can give that information to the Artemis suit vendor, and we also want to develop this unique test capability to assess future hardware designs.”
      In the past, astronauts themselves have been part of thermal testing. For gloves, an astronaut inserted a gloved hand into a chilled “glove box,” grabbed a frigid object, and held it until their skin temperature dropped as low as 50 F (10 C). McFarland stressed that such human-in-the-loop testing remains essential to ensuring future spacesuit safety but doesn’t produce the consistent data the team is looking for with the CITADEL testing.
      To obtain objective feedback, the CITADEL testing team used a custom-built manikin hand and foot. A system of fluid loops mimicked the flow of warm blood through the appendages, while dozens of temperature and heat flux sensors provided data from inside gloves and boots.
      “By using CITADEL and modern manikin technology, we can test design iterations faster and at much lower cost than traditional human-in-the-loop testing,” said Morgan Abney, NASA technical fellow for Environmental Control and Life Support, who conceived the glove testing effort. “Now we can really push the envelope on next-generation suit designs and have confidence we understand the risks. We’re one step closer to landing astronauts back on the Moon.”
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      Houston, We Have a Podcast: next-generation spacesuits Why NASA’s Perseverance rover carries spacesuit materials News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-060
      Share
      Details
      Last Updated Apr 24, 2025 Related Terms
      Artemis 3 Earth's Moon Exploration Systems Development Mission Directorate Jet Propulsion Laboratory NASA Engineering & Safety Center Academy Spacesuits xEVA & Human Surface Mobility Explore More
      3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 7 days ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
      Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
      Article 1 week ago 3 min read Michael Ciancone Builds a Lasting Legacy in Human Spaceflight 
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      First Results from the Eclipse Soundscapes Project: Webinar on May 7
      How do the sudden darkness and temperature changes of a solar eclipse impact life on Earth? The Eclipse Soundscapes project invited you to document changes in the environment during the week of the April 8, 2024 total solar eclipse, using your own senses or an audiomoth sound recorder. 
      Thanks to your participation, the Eclipse Soundscapes team collected 25 terabytes of audio data during the 2023 and 2024 solar eclipses. “It was really empowering for me to participate in a scientific research study with my son beside me so he could see how scientific data can be (collected),” said one Eclipse Soundscapes volunteer.
      More than 500 volunteers  collected data using AudioMoth recorders during the April 8, 2024 eclipse for the Eclipse Soundscapes project. Credit: Eclipse Soundscapes Since the eclipse, the Eclipse Soundscapes team has been turning the submitted data into a new, carefully validated data set. They have been assessing recording quality, verifying timestamps, and logging other kinds of information that support the submitted data. With the newly validated data, they are now using machine learning to study wildlife behavior and compare regional differences. They do some of this work using spectrographic analysis—spreading out the sound into different frequency ranges like a prism spreads light into a rainbow. The team is also working to make the validated data freely available to the public on the Zenodo website—a free, open-source research data repository developed by CERN (the European Organization for Nuclear Research) that allows researchers to share and preserve their work, regardless of discipline or format. 
      The team’s first inspection of the data suggests that some species may mimic dusk-like behavior during totality. Want to hear more early results? You can join the team’s live webinar on May 7, 2025, at 2:00 p.m. EST with Dr. Brent Pease. Register now at EclipseSoundscapes.org. You can also explore this interactive map of data analysis sites, with details about each site, including partner organizations.

      Register for the May 7 Preliminary Results WEBINAR


      Read the Preliminary Results Blog

      Share








      Details
      Last Updated Apr 22, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe 


      Article


      1 week ago
      7 min read Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights 


      Article


      2 weeks ago
      1 min read Join our Virtual Do NASA Science LIVE Event on April 10!


      Article


      3 weeks ago
      View the full article
    • By NASA
      7 min read
      Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights 
      One year ago today, a total solar eclipse swept across the United States. The event was a cornerstone moment in the Heliophysics Big Year, a global celebration of the Sun’s influence on Earth and the entire solar system. From October 2023 to December 2024 — a period encompassing two solar eclipses across the U.S., two new NASA heliophysics missions, and one spacecraft’s history-making solar flyby — NASA celebrated the Sun’s widespread influence on our lives.  
      An infographic showing key numbers summarizing the activities and events of the Heliophysics Big Year, which spanned from Oct. 14, 2023 – Dec. 24, 2024.  NASA/Miles Hatfield/Kristen Perrin Annular Solar Eclipse
      An annular (or “ring of fire”) solar eclipse occurred Oct. 14, 2023, and kicked off the Helio Big Year with a bang. Millions of people across North America witnessed the Moon crossing in front of the Sun, creating this brilliant celestial event. NASA’s live broadcast had more than 11 million views across different platforms.  
      On Oct. 14, 2023, an annular solar eclipse crossed North, Central, and South America. Visible in parts of the United States, Mexico, and many countries in South and Central America, millions of people in the Western Hemisphere were able to experience this “ring of fire” eclipse. NASA’s official broadcast and outreach teams were located in Kerrville, TX, and Albuquerque, NM, to capture the event and celebrate with the communities in the path of annularity. 
      Credit: NASA/Ryan Fitzgibbons  Before the eclipse, NASA introduced the 2023 Eclipse Explorer, an interactive map to explore eclipse details for any location in the United States. NASA shared tips on eclipse safety, including through a video with NSYNC’s Lance Bass and even with an augmented reality filter. 
      Scientists also studied conditions during the annular eclipse with sounding rockets, balloons, and amateur radio.  
      Total Solar Eclipse 
      On April 8, 2024, millions of people across North America experienced a total solar eclipse that darkened parts of 15 U.S. states in the path of totality.  
      Ahead of the event, NASA hosted a widespread safety campaign, handed out over 2 million solar viewing glasses, and produced an interactive map to help viewers plan their viewing experience. On eclipse day, NASA also hosted a live broadcast from locations across the country, drawing over 38 million views. 
      Researchers studied the eclipse and its effects on Earth using a variety of techniques, including international radar networks, scientific rockets, weather balloons, and even high-altitude NASA WB-57 jets. Several NASA-funded citizen science projects also conducted experiments. These projects included more than 49,000 volunteers who contributed an astounding 53 million observations.  
      This infographic shares metrics from citizen science projects that occurred during the total solar eclipse on April 8, 2024. NASA/Kristen Perrin “We have opened a window for all Americans to discover our connection to the Sun and ignited enthusiasm for engaging with groundbreaking NASA science, whether it’s through spacecraft, rockets, balloons, or planes,” said Kelly Korreck, a Heliophysics program scientist at NASA Headquarters in Washington. “Sharing the excitement of NASA heliophysics with our fellow citizens has truly been amazing.” 
      Science Across the Solar System 
      NASA’s heliophysics missions gather data on the Sun and its effects across the solar system.  
      The Atmospheric Waves Experiment (AWE) mission launched from NASA’s Kennedy Space Center in Florida Nov. 9, 2023, and was installed on the International Space Station nine days later. This mission studies atmospheric gravity waves, how they form and travel through Earth’s atmosphere, and their role in space weather. 
      Orbital footage from the International Space Station shows NASA’s Atmospheric Waves Experiment (AWE) as it was extracted from SpaceX’s Dragon cargo spacecraft. NASA/International Space Station On Nov. 4, 2024, the Coronal Diagnostic Experiment (CODEX) mission also launched to the space station, where it studies the solar wind, with a focus on what heats it and propels it through space.  
      Pictured is the CODEX instrument inside the integration and testing facility at NASA’s Goddard Space Flight Center. NASA/CODEX team The Aeronomy of Ice in the Mesosphere (AIM) mission ended after 16 years studying Earth’s highest clouds, called polar mesospheric clouds.  
      An artist’s concept shows the Aeronomy of Ice in the Mesosphere (AIM) spacecraft orbiting Earth.   NASA’s Goddard Space Flight/Center Conceptual Image Lab  NASA’s Ionospheric Connection Explorer (ICON) also ended after three successful years studying the outermost layer of Earth’s atmosphere, called the ionosphere. 
      NASA’s ICON, shown in this artist’s concept, studied the frontiers of space, the dynamic zone high in our atmosphere where terrestrial weather from below meets space weather above.  NASA’s Goddard Space Flight Center/Conceptual Image Lab  Voyager has been operating for more than 47 years, continuing to study the heliosphere and interstellar space. In October 2024, the Voyager 1 probe stopped communicating. The mission team worked tirelessly to troubleshoot and ultimately reestablish communications, keeping the mission alive to continue its research.  
      In this artist’s conception, NASA’s Voyager 1 spacecraft has a bird’s-eye view of the solar system. The circles represent the orbits of the major outer planets: Jupiter, Saturn, Uranus, and Neptune. Launched in 1977, Voyager 1 visited the planets Jupiter and Saturn. The spacecraft is now 13 billion miles from Earth, making it the farthest and fastest-moving human-made object ever built. In fact, Voyager 1 is now zooming through interstellar space, the region between the stars that is filled with gas, dust, and material recycled from dying stars. NASA’s Hubble Space Telescope is observing the material along Voyager’s path through space. NASA/STSci While the goal of the NASA heliophysics fleet is to study the Sun and its influence, these missions often make surprising discoveries that they weren’t originally designed to. From finding 5,000 comets to studying the surface of Venus, NASA highlighted and celebrated these bonus science connections during the Helio Big Year. 
      Solar Maximum 
      Similar to Earth, the Sun has its own seasons of activity, with a solar minimum and solar maximum during a cycle that lasts about 11 years. The Helio Big Year happened to coincide with the Sun’s active period, with NASA and NOAA announcing in October 2024 that the Sun had reached solar maximum, the highest period of activity. Some of the largest solar storms on current record occurred in 2024, and the largest sunspot in nearly a decade was spotted in the spring of 2024, followed by a colossal X9.0 solar flare Oct. 3, 2024.  
      Sunspots are cooler, darker areas on the solar surface where the Sun’s magnetic field gets especially intense, often leading to explosive solar eruptions. This sunspot group was so big that nearly 14 Earths could fit inside it! The eruptions from this region resulted in the historic May 2024 geomagnetic storms, when the aurora borealis, or northern lights, were seen as far south as the Florida Keys.
      Credit: NASA/Beth Anthony Viewers across the U.S. spotted auroras in their communities as a result of these storms, proving that you can capture amazing aurora photography without advanced equipment. 
      The Big Finale: Parker’s Close Approach to the Sun 
      NASA’s Parker Solar Probe holds the title as the closest human-made object to the Sun. On Dec. 24, 2024, Parker made history by traveling just 3.8 million miles from the Sun’s surface at a whopping 430,000 miles per hour.  
      “Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters. 
      Controllers have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. 
      Credit: NASA/Joy Ng Parker Solar Probe’s close approach capped off a momentous Heliophysics Big Year that allowed NASA scientists to gather unprecedented data and invited everyone to celebrate how the Sun impacts us all. In the growing field of heliophysics, the Helio Big Year reminded us all how the Sun touches everything and how important it is to continue studying our star’s incredible influence.  
      A Big Year Ahead 
      Though the Helio Big Year is over, heliophysics is only picking up its pace in 2025. We remain in the solar maximum phase, so heightened solar activity will continue into the near future. In addition, several new missions are expected to join the heliophysics fleet by year’s end. 
      The PUNCH mission, a set of four Sun-watching satellites imaging solar eruptions in three dimensions, and EZIE, a trio of Earth-orbiting satellites tracing the electrical currents powering Earth’s auroras, have already launched. The LEXI instrument, an X-ray telescope studying Earth’s magnetosphere from the Moon, also launched through NASA’s CLPS (Commercial Lunar Payload Services) initiative. 
      Future missions slated for launch include TRACERS, which will investigate the unusual magnetic environment near Earth’s poles, and ESCAPADE, venturing to Mars to measure the planet’s unique magnetic environment. 
      The last two missions will share a ride to space. The Carruthers Geocorona Observatory will look back at home, studying ultraviolet light emitted by the outermost boundaries of our planet’s atmosphere. The IMAP mission will instead look to the outermost edges of our heliosphere, mapping the boundaries where the domain of our Sun transitions into interstellar space. 
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated Apr 08, 2025 Editor Miles Hatfield Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate The Solar System The Sun Explore More
      5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves


      Article


      21 hours ago
      2 min read Hubble Studies a Nearby Galaxy’s Star Formation


      Article


      4 days ago
      3 min read Hubble Spots Stellar Sculptors in Nearby Galaxy


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...