Members Can Post Anonymously On This Site
What is an Engineer? (Grades K-4)
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA Systems Engineer Daniel Eng serves his second year as a judge for the Aerospace Valley Robotics Competition at the Palmdale Aerospace Academy in Palmdale, California, in 2019. NASA/Lauren Hughes As a child in the 1960s, Daniel Eng spent his weekends in New York City’s garment district in Manhattan’s Lower East Side, clipping loose threads off finished clothing. He worked alongside his mother, a seamstress, and his father, a steam press operator, where he developed an eye for detail and a passion for learning. Now, he applies these capabilities at NASA, where he works as an engineer for the Air Mobility Pathfinders project.
“I often wonder whether the NASA worm magnet that someone left on my refrigerator in college, which I kept all these years, may have something to do with me ending up at NASA,” Eng said.
His route to NASA was not straightforward. Eng dropped out of high school to join the U.S. Army during the Vietnam War. He earned a GED certificate while on active duty and after his service earned a bachelor’s degree in electrical engineering from the University of Pennsylvania.
After college, Eng worked as a researcher investigating laser communications for the U.S. Navy, work which launched his career in aerospace. He then held jobs at several global corporations before landing at NASA.
NASA systems engineer, Daniel Eng, right, talks with student participants at the 2019 Aerospace Valley Robotics Competition at the Palmdale Aerospace Academy in Palmdale, California.NASA/Lauren Hughes “Looking back now, the Navy was ‘my launching point’ into the aerospace industry,” Eng said. “In more than four decades, I held various positions rising through the ranks ranging from circuit card design to systems analyst to production support to project and program management for advanced technology systems on a multitude of military and commercial aircraft projects.”
Today, he uses virtual models to plan and develop flight test requirements for piloted and automated aircraft, which will help guide future air taxi operations in cities.
“Engineers can virtually test computer models of designs, concepts, and operations before they are in place or even built, providing a safe and cost-effective way to verify the processes work the way they should,” Eng said.
He tells his grandkids to stay curious and ask a lot of questions so they can learn as much as possible.
“Be courteous, humble, kind, and respectful of people, and always remind yourself that you are just one human being among many ‘Earthlings,’” Eng said. “Teamwork is a very important aspect of success because rarely, if ever, does one person succeed on their own without help from others.”
Share
Details
Last Updated Jun 09, 2025 EditorDede DiniusContactLaura Mitchelllaura.a.mitchell@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center People of Armstrong People of NASA Explore More
4 min read Paul Morris: Filming the Final Frontier
Article 9 hours ago 6 min read NASA Tests New Ways to Stick the Landing in Challenging Terrain
Article 2 weeks ago 2 min read NASA Videographer Wins Top Award for Capturing Human Side of Science
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 Min Read NASA Knows: What is Lunar Regolith? (Grades 5-8)
This article is for students grades 5-8.
The surface of the Moon is covered in a thick layer of boulders, rocks, and dust. This dusty, rocky layer is called lunar regolith. It was created a long time ago when meteorites crashed into the Moon and broke up the ground. NASA scientists study the regolith to learn more about the Moon’s history. But the smallest parts of the regolith make exploring the Moon very hard! That is why scientists are working to understand it better and to keep astronauts safe during future lunar missions.
What is lunar regolith like?
Lunar regolith is full of tiny, sharp pieces that can act like little bits of broken glass. Unlike the dust and soil on Earth, the smallest pieces of regolith have not been worn down by wind or rain. These bits are rough, jagged, and cling to everything they touch – boots, gloves, tools, and even spacecraft! In pictures it might look like soft, harmless gray powder, but it is actually scratchy and can damage lunar landers, spacesuits, and robots. This makes working on the Moon a lot harder than it looks!
Is regolith harmful to astronauts?
The small parts of lunar regolith get stuck on spacesuits and can be brought inside the spacecraft. Once it is inside, it can cause some serious problems. The tiny, sharp pieces can make astronauts’ skin itchy, irritate their eyes, and even make them cough. If it gets into their lungs, it can make them sick. Scientists worry the damage from breathing in lunar regolith could keep bothering astronauts for a long time, even after they are back on Earth. That is why NASA scientists and technologists are working hard to find smart ways to deal with regolith and protect astronauts!
Can regolith damage NASA equipment?
Regolith doesn’t just cause trouble for astronauts. It can also damage important machines! It can scratch tools and cover up solar panels, causing them to stop working. It can also clog radiators, which are used to keep machines cool. The small bits of regolith can make surfaces slippery and hard to walk on. It can even make it tough for robots to move around. Unlike Earth’s soil, the Moon’s regolith isn’t packed down. Any time we move things around on the Moon’s surface, we spread the rough, dusty particles around. Can you imagine what a mess launching and landing a spacecraft would make?
All of this can make exploring the Moon much more difficult and even dangerous!
What is NASA doing to understand lunar regolith?
NASA is building many cool technologies to help deal with the harm regolith can cause. One of the tools technologists have already developed is call an Electrodynamic Dust Shield (EDS). It uses electricity to create a kind of force field that pushes the small particles away from tools on the Moon!
There are many ways NASA is working to understand lunar regolith. One interesting way is by using special cameras and lasers on landers to watch how the regolith moves when a spacecraft lands. This system is called SCALPPS, which stands for Stereo Cameras for Lunar Plume-Surface Studies. SCALPSS helps scientists see how the lunar regolith gets blown around during landings. It helps scientists to measure the size of the regolith pieces and the amount that flies up into the air during landing.
The more NASA knows about how regolith behaves, the better they can plan for safe missions!
Career Corner
Many types of scientists and engineers work together to understand lunar regolith. If you want to study space, here are some cool jobs you could have!
Planetary Geologist: These scientists are like detectives. They study how the things in space were formed, how they have changed, and what they can tell us about the rest of the solar system. Their work helps us understand what is in space.
Chemist: Chemists look at space rocks and space dust. They want to know what these materials are made of and how they were created.
Astrobiologist: Astrobiologists are studying to find clues of life beyond Earth. They study space to find out if life ever existed – or could exist – somewhere else in the universe.
Planetary Scientist: These scientists use pictures, data from spacecraft, and even samples from rocks and dust to learn about other worlds. They explore space without ever leaving Earth!
Remote Sensing Scientist: These scientists use satellites, drones, and special cameras to study planets from far away. It is like being a space spy who looks for clues from above.
Engineers: Engineers solve problems! Civil engineers, materials engineers, and geotechnical engineers work together to understand how regolith can best be used for building materials and get useful resources on the Moon.
Explore More
Making Regolith Activity
Watch: Mitigating Lunar Dust
Watch: NASA SCALPSS
Watch: Surprisingly STEM: Exploration Geologist Surprisingly STEM: Moon Rock Processors
Explore More For Students Grades 5-8
View the full article
-
By NASA
This article is for students grades 5-8.
The International Space Station is a large spacecraft in orbit around Earth. It serves as a home where crews of astronauts and cosmonauts live. The space station is also a unique science laboratory. Several nations worked together to build and use the space station. The space station is made of parts that were assembled in space by astronauts. It orbits Earth at an average altitude of approximately 250 miles. It travels at 17,500 mph. This means it orbits Earth every 90 minutes. NASA is using the space station to learn more about living and working in space. These lessons will make it possible to send humans farther into space than ever before.
How Old Is the Space Station?
The first piece of the International Space Station was launched in November 1998. A Russian rocket launched the Russian Zarya (zar EE uh) control module. About two weeks later, the space shuttle Endeavour met Zarya in orbit. The space shuttle was carrying the U.S. Unity node. The crew attached the Unity node to Zarya.
More pieces were added over the next two years before the station was ready for people to live there. The first crew arrived on Nov. 2, 2000. People have lived on the space station ever since. More pieces have been added over time. NASA and its partners from around the world completed construction of the space station in 2011.
______________________________________________________________________
Words to Know
Airlock: an air-tight chamber that can be pressurized and depressurized to allow access between spaces with different air pressure.
Microgravity: a condition, especially in space orbit, where the force of gravity is so weak that weightlessness occurs.
Module: an individual, self-contained segment of a spacecraft that is designed to perform a particular task.
Truss: a structural frame based on the strong structural shape of the triangle; functions as a beam to support and connect various components.
______________________________________________________________________
How Big Is the Space Station?
The space station has the volume of a six-bedroom house with six sleeping quarters, two bathrooms, a gym, and a 360-degree view bay window. It is able to support a crew of seven people, plus visitors. On Earth, the space station would weigh almost one million pounds. Measured from the edges of its solar arrays, the station covers the area of a football field including the end zones. It includes laboratory modules from the United States, Russia, Japan, and Europe.
What Are the Parts of the Space Station?
In addition to the laboratories where astronauts conduct science research, the space station has many other parts. The first Russian modules included basic systems needed for the space station to function. They also provided living areas for crew members. Modules called “nodes” connect parts of the station to each other.
Stretching out to the sides of the space station are the solar arrays. These arrays collect energy from the sun to provide electrical power. The arrays are connected to the station with a long truss. On the truss are radiators that control the space station’s temperature.
Robotic arms are mounted outside the space station. The robot arms were used to help build the space station. Those arms also can move astronauts around when they go on spacewalks outside. Other arms operate science experiments.
Astronauts can go on spacewalks through airlocks that open to the outside. Docking ports allow other spacecraft to connect to the space station. New crews and visitors arrive through the ports. Astronauts fly to the space station on SpaceX Dragon and Russian Soyuz spacecraft. Robotic spacecraft use the docking ports to deliver supplies
Why Is the Space Station Important?
The space station has made it possible for people to have an ongoing presence in space. Human beings have been living in space every day since the first crew arrived. The space station’s laboratories allow crew members to do research that could not be done anywhere else. This scientific research benefits people on Earth. Space research is even used in everyday life. The results are products called “spinoffs.” Scientists also study what happens to the body when people live in microgravity for a long time. NASA and its partners have learned how to keep a spacecraft working well. All of these lessons will be important for future space exploration.
NASA currently is working on a plan to explore other worlds. The space station is one of the first steps. NASA will use lessons learned on the space station to prepare for human missions that reach farther into space than ever before.
Career Corner
Are you interested in a career that is related to living and working in space? Many different types of jobs make the space station a success. Here are a few examples:
Astronaut: These explorers come from a wide variety of backgrounds including military service, the medical field, science research, and engineering design. Astronauts must have skills in leadership, teamwork, and communications. They spend two years training before they are eligible to be assigned to spaceflight missions.
Microgravity Plant Scientist: These scientists study ways to grow plants in the microgravity environment of space. Growing plants on future space missions could provide food and oxygen. Plant scientists design experiments to be conducted by astronauts on the space station. These test new techniques for maximizing plant growth.
Fitness Trainer: Spending months on the space station takes a toll on astronauts’ bodies. Fitness trainers work with astronauts before, during, and after their space station missions to help keep them strong and healthy. This includes creating workout plans for while they’re living and working in space.
More About the International Space Station
International Space Station Home Page
Spot the Station
Video: #AskNASA What Is the International Space Station?
Read What Is the International Space Station? (Grades K-4)
Explore More For Students Grades 5-8
View the full article
-
By NASA
NASA Glenn Research Center senior materials research engineer Kim de Groh, who conducted research for Hubble Space Telescope servicing missions, shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Dennis Brown April 24 marked the 35th anniversary of the launch of NASA’s Hubble Space Telescope. The iconic space observatory remains a household name —the most well-recognized and scientifically productive telescope in history. Engineers at NASA’s Glenn Research Center in Cleveland played a significant role in how the telescope functions today.
NASA’s Glenn Research Center researchers Kim de Groh, left, and Joyce Dever conducted research for Hubble Space Telescope servicing missions. De Groh shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Sara Lowthian-Hanna NASA Glenn researchers assisted in all five Hubble servicing missions by testing damaged insulation, determining why it degraded in space, and recommending replacement materials.
One of those researchers, Kim de Groh, senior materials research engineer, shared some of that research in a special presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on May 8. She chronicled her Hubble experience with a presentation, a show-and-tell with samples directly from the telescope, and a Q&A addressing the audience’s Hubble-related questions.
Return to Newsletter Explore More
1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available
Article 1 min ago 1 min read NASA Glenn Shows Students Temperature-Cooling Technology
Article 2 mins ago View the full article
-
By NASA
This article is for students grades 5-8.
Aerodynamics is the way objects move through air. The rules of aerodynamics explain how an airplane is able to fly. Anything that moves through air is affected by aerodynamics, from a rocket blasting off, to a kite flying. Since they are surrounded by air, even cars are affected by aerodynamics.
What Are the Four Forces of Flight?
The four forces of flight are lift, weight, thrust and drag. These forces make an object move up and down, and faster or slower. The amount of each force compared to its opposing force determines how an object moves through the air.
What Is Weight?
Gravity is a force that pulls everything down to Earth. Weight is the amount of gravity multiplied by the mass of an object. Weight is also the downward force that an aircraft must overcome to fly. A kite has less mass and therefore less weight to overcome than a jumbo jet, but they both need the same thing in order to fly — lift.
What Is Lift?
Lift is the push that lets something move up. It is the force that is the opposite of weight. Everything that flies must have lift. For an aircraft to move upward, it must have more lift than weight. A hot air balloon has lift because the hot air inside is lighter than the air around it. Hot air rises and carries the balloon with it. A helicopter’s lift comes from the rotor blades. Their motion through the air moves the helicopter upward. Lift for an airplane comes from its wings.
How Do an Airplane’s Wings Provide Lift?
The shape of an airplane’s wings is what makes it possible for the airplane to fly. Airplanes’ wings are curved on top and flatter on the bottom. That shape makes air flow over the top faster than under the bottom. As a result, less air pressure is on top of the wing. This lower pressure makes the wing, and the airplane it’s attached to, move up. Using curves to affect air pressure is a trick used on many aircraft. Helicopter rotor blades use this curved shape. Lift for kites also comes from a curved shape. Even sailboats use this curved shape. A boat’s sail is like a wing. That’s what makes the sailboat move.
What Is Drag?
Drag is a force that pulls back on something trying to move. Drag provides resistance, making it hard to move. For example, it is more difficult to walk or run through water than through air. Water causes more drag than air. The shape of an object also affects the amount of drag. Round surfaces usually have less drag than flat ones. Narrow surfaces usually have less drag than wide ones. The more air that hits a surface, the more the drag the air produces.
What Is Thrust?
Thrust is the force that is the opposite of drag. It is the push that moves something forward. For an aircraft to keep moving forward, it must have more thrust than drag. A small airplane might get its thrust from a propeller. A larger airplane might get its thrust from jet engines. A glider does not have thrust. It can only fly until the drag causes it to slow down and land.
Why Does NASA Study Aerodynamics?
Aerodynamics is an important part of NASA’s work. The first A in NASA stands for aeronautics, which is the science of flight. NASA works to make airplanes and other aircraft better. Studying aerodynamics is an important part of that work. Aerodynamics is important to other NASA missions. Probes landing on Mars have to travel through the Red Planet’s thin atmosphere. Having to travel through an atmosphere means aerodynamics is important on other planets too.
More About Aerodynamics
Dynamics of Flight
Read What Is Aerodynamics (Grades K-4)
Explore More For Students Grades 5-8 View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.