Members Can Post Anonymously On This Site
HST Reveals Stunning Detail in Herbig-Haro Object
-
Similar Topics
-
By NASA
Explore This SectionScience Europa Clipper Europa’s Stunning Surface Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean The puzzling, fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view.NASA/JPL-Caltech/SETI Institute Downloads
View All Europa Resources JPG
May 28, 2025
JPEG (2.59 MB)
The puzzling, fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA’s Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon’s surface at the highest resolution.
The view was previously released as a mosaic with lower resolution and strongly enhanced color (see PIA02590). To create this new version, the images were assembled into a realistic color view of the surface that approximates how Europa would appear to the human eye.
The scene shows the stunning diversity of Europa’s surface geology. Long, linear cracks and ridges crisscross the surface, interrupted by regions of disrupted terrain where the surface ice crust has been broken up and re-frozen into new patterns.
Color variations across the surface are associated with differences in geologic feature type and location. For example, areas that appear blue or white contain relatively pure water ice, while reddish and brownish areas include non-ice components in higher concentrations. The polar regions, visible at the left and right of this view, are noticeably bluer than the more equatorial latitudes, which look more white. This color variation is thought to be due to differences in ice grain size in the two locations.
Images taken through near-infrared, green and violet filters have been combined to produce this view. The images have been corrected for light scattered outside of the image, to provide a color correction that is calibrated by wavelength. Gaps in the images have been filled with simulated color based on the color of nearby surface areas with similar terrain types.
This global color view consists of images acquired by the Galileo Solid-State Imaging (SSI) experiment on the spacecraft’s first and fourteenth orbits through the Jupiter system, in 1995 and 1998, respectively. Image scale is 1 mile (1.6 kilometers) per pixel. North on Europa is at right.
The Galileo mission was managed by NASA’s Jet Propulsion Laboratory in Pasadena, California, for the agency’s Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology, Pasadena.
Keep Exploring Discover More Topics From NASA
Europa Clipper Resources
Jupiter
Jupiter Moons
Science Missions
View the full article
-
By NASA
What does it take to gaze through time to our universe’s very first stars and galaxies?
NASA answers this question in its new documentary, “Cosmic Dawn: The Untold Story of the James Webb Space Telescope.” The agency’s original documentary, which chronicles the story of the most powerful telescope ever deployed in space, was released Wednesday, June 11.
Cosmic Dawn offers an unprecedented glimpse into the delicate assembly, rigorous testing, and triumphant launch of NASA’s James Webb Space Telescope. The documentary showcases the complexity involved in creating a telescope capable of peering billions of years into the past.
Cosmic Dawn is now available for streaming on NASA’s YouTube, NASA+, and select local theaters. The trailer is available on NASA+ and YouTube.
Relive the pitfalls and the triumphs of the world’s most powerful space telescope—from developing the idea of an impossible machine to watching with bated breath as it unfolded, hurtling through space a million miles away from Earth. Watch the Documentary on YouTube The film features never-before-seen footage captured by the Webb film crew, offering intimate access to the challenges and triumphs faced by the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland — the birthplace of Webb.
“At NASA, we’re thrilled to share the untold story of our James Webb Space Telescope in our new film ‘Cosmic Dawn,’ celebrating not just the discoveries, but the extraordinary people who made it all happen, for the benefit of humanity,” said Rebecca Sirmons, head of NASA+ at the agency’s headquarters in Washington.
From its vantage point more than a million miles from Earth and a massive sunshield to block the light of our star, Webb’s First Deep Field the deepest and sharpest infrared images of the universe that the world had seen.
Webb’s images have dazzled people around the globe, capturing the very faint light of the first stars and galaxies that formed more than 13.5 billion years ago. These are baby pictures from an ancient past when the first objects were turning on and emitting light after the Big Bang. Webb has also given us new insights into black holes, planets both inside and outside of our own solar system, and many other cosmic phenomena.
Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful. It was always going to make history
Sophia roberts
NASA Video Producer
NASA’s biggest and most powerful space telescope was also its most technically complicated to build. It was harder still to deploy, with more than 300 critical components that had to deploy perfectly. The risks were high in this complicated dance of engineering, but the rewards were so much higher.
“Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful,” said video producer Sophia Roberts, who chronicled the five years preceding Webb’s launch. “It was always going to make history.”
NASA scientists like Nobel Laureate Dr. John Mather conceived Webb to look farther and deeper into origins of our universe using cutting edge infrared technology and massive mirrors to collect incredibly rich information about our universe, from the light of the first galaxies to detailed images of planets in our own solar system.
To achieve this goal, NASA and its partners faced unprecedented hurdles.
Webb’s development introduced questions that no one had asked before. How do you fit a telescope with the footprint of a tennis court into a rocket? How do you clean 18 sensitive mirrors when a single scratch could render them inoperable? How do you maintain critical testing while hurricane stormwater pours through ceilings?
A technician inspects the James Webb Space Telescope primary mirrors at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.NASA/Sophia Roberts Cosmic Dawn captures 25 years of formidable design constraints, high-stake assessments, devastating natural disasters, a global pandemic and determined individuals who would let none of that get in the way of getting this monumental observatory to its rightful place in the cosmos.
“There was nothing easy about Webb at all,” said Webb project manager Bill Ochs. “I don’t care what aspect of the mission you looked at.”
Viewers will experience a one-of-a-kind journey as NASA and its partners tackle these dilemmas — and more — through ingenuity, teamwork, and unbreakable determination.
“The inspiration of trying to discover something — to build something that’s never been built before, to discover something that’s never been known before — it keeps us going,” Mather said. “We are pleased and privileged in our position here at NASA to be able to carry out this [purpose] on behalf of the country and the world.”
Bound by NASA’s 66-year commitment to document and share its work with the public, Cosmic Dawn details every step toward Webb’s launch and science results.
Learn more at nasa.gov/cosmicdawn By Laine Havens,
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Katie Konans,
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jun 11, 2025 Related Terms
James Webb Space Telescope (JWST) Goddard Space Flight Center NASA+ View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A lot can change in a year for Earth’s forests and vegetation, as springtime and rainy seasons can bring new growth, while cooling temperatures and dry weather can bring a dieback of those green colors. And now, a novel type of NASA visualization illustrates those changes in a full complement of colors as seen from space.
Researchers have now gathered a complete year of PACE data to tell a story about the health of land vegetation by detecting slight variations in leaf colors. Previous missions allowed scientists to observe broad changes in chlorophyll, the pigment that gives plants their green color and also allows them to perform photosynthesis. But PACE now allows scientists to see three different pigments in vegetation: chlorophyll, anthocyanins, and carotenoids. The combination of these three pigments helps scientists pinpoint even more information about plant health. Credit: NASA’s Goddard Space Flight Center NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite is designed to view Earth’s microscopic ocean plants in a new lens, but researchers have proved its hyperspectral use over land, as well.
Previous missions measured broad changes in chlorophyll, the pigment that gives plants their green color and also allows them to perform photosynthesis. Now, for the first time, PACE measurements have allowed NASA scientists and visualizers to show a complete year of global vegetation data using three pigments: chlorophyll, anthocyanins, and carotenoids. That multicolor imagery tells a clearer story about the health of land vegetation by detecting the smallest of variations in leaf colors.
“Earth is amazing. It’s humbling, being able to see life pulsing in colors across the whole globe,” said Morgaine McKibben, PACE applications lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s like the overview effect that astronauts describe when they look down at Earth, except we are looking through our technology and data.”
Anthocyanins, carotenoids, and chlorophyll data light up North America, highlighting vegetation and its health.Credit: NASA’s Scientific Visualization Studio Anthocyanins are the red pigments in leaves, while carotenoids are the yellow pigments – both of which we see when autumn changes the colors of trees. Plants use these pigments to protect themselves from fluctuations in the weather, adapting to the environment through chemical changes in their leaves. For example, leaves can turn more yellow when they have too much sunlight but not enough of the other necessities, like water and nutrients. If they didn’t adjust their color, it would damage the mechanisms they have to perform photosynthesis.
In the visualization, the data is highlighted in bright colors: magenta represents anthocyanins, green represents chlorophyll, and cyan represents carotenoids. The brighter the colors are, the more leaves there are in that area. The movement of these colors across the land areas show the seasonal changes over time.
In areas like the evergreen forests of the Pacific Northwest, plants undergo less seasonal change. The data highlights this, showing comparatively steadier colors as the year progresses.
The combination of these three pigments helps scientists pinpoint even more information about plant health.
“Shifts in these pigments, as detected by PACE, give novel information that may better describe vegetation growth, or when vegetation changes from flourishing to stressed,” said McKibben. “It’s just one of many ways the mission will drive increased understanding of our home planet and enable innovative, practical solutions that serve society.”
The Ocean Color Instrument on PACE collects hyperspectral data, which means it observes the planet in 100 different wavelengths of visible and near infrared light. It is the only instrument – in space or elsewhere – that provides hyperspectral coverage around the globe every one to two days. The PACE mission builds on the legacy of earlier missions, such as Landsat, which gathers higher resolution data but observes a fraction of those wavelengths.
In a paper recently published in Remote Sensing Letters, scientists introduced the mission’s first terrestrial data products.
“This PACE data provides a new view of Earth that will improve our understanding of ecosystem dynamics and function,” said Fred Huemmrich, research professor at the University of Maryland, Baltimore County, member of the PACE science and applications team, and first author of the paper. “With the PACE data, it’s like we’re looking at a whole new world of color. It allows us to describe pigment characteristics at the leaf level that we weren’t able to do before.”
As scientists continue to work with these new data, available on the PACE website, they’ll be able to incorporate it into future science applications, which may include forest monitoring or early detection of drought effects.
By Erica McNamee
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jun 05, 2025 EditorKate D. RamsayerContactKate D. Ramsayerkate.d.ramsayer@nasa.gov Related Terms
Earth Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
4 min read Tundra Vegetation to Grow Taller, Greener Through 2100, NASA Study Finds
Article 10 months ago 8 min read NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture
In the Florida Everglades, NASA’s BlueFlux Campaign investigates the relationship between tropical wetlands and greenhouse…
Article 3 months ago 5 min read NASA Takes to the Air to Study Wildflowers
Article 2 months ago View the full article
-
By USH
A mysterious object within our own galaxy is emitting a bizarre pulsing signal directed at Earth, one that scientists say is unlike anything ever recorded, and they haven’t ruled out an alien origin.
NASA astrophysicist Dr. Richard Stanton, who led the research team, described the signal as “strange” and said its properties defy all known astrophysical explanations. “In more than 1,500 hours of observations, we’ve never seen a pulse like this,”
Stanton noted. The signal originates from a sun-like star approximately 100 light-years away in the constellation Ursa Major (the Great Bear). It was first detected as a flash of light that abruptly brightened, dimmed, and then brightened again, an unusual pattern that immediately drew attention.
Even more puzzling, the pulse repeated exactly four seconds later, matching the first in every detail.
According to Stanton’s findings, published in Acta Astronautica, the signal also triggered bizarre activity in the host star, causing it to partially vanish in just a tenth of a second, a phenomenon with no clear scientific explanation.
It's noteworthy that this object was specifically targeting Earth with its signal, not just broadcasting randomly into space, but directing its transmission toward our planet.
Whatever the intention behind it, that alone is intriguing. Even more interesting is that NASA publicly acknowledged this discovery. While NASA’s statements aren't always fully transparent, could this be a prelude to something bigger, perhaps a forthcoming revelation about the discovery of a Dyson Sphere, or even confirmation of intelligent extraterrestrial life?
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.