Members Can Post Anonymously On This Site
Heart Health
-
Similar Topics
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A lot can change in a year for Earth’s forests and vegetation, as springtime and rainy seasons can bring new growth, while cooling temperatures and dry weather can bring a dieback of those green colors. And now, a novel type of NASA visualization illustrates those changes in a full complement of colors as seen from space.
Researchers have now gathered a complete year of PACE data to tell a story about the health of land vegetation by detecting slight variations in leaf colors. Previous missions allowed scientists to observe broad changes in chlorophyll, the pigment that gives plants their green color and also allows them to perform photosynthesis. But PACE now allows scientists to see three different pigments in vegetation: chlorophyll, anthocyanins, and carotenoids. The combination of these three pigments helps scientists pinpoint even more information about plant health. Credit: NASA’s Goddard Space Flight Center NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite is designed to view Earth’s microscopic ocean plants in a new lens, but researchers have proved its hyperspectral use over land, as well.
Previous missions measured broad changes in chlorophyll, the pigment that gives plants their green color and also allows them to perform photosynthesis. Now, for the first time, PACE measurements have allowed NASA scientists and visualizers to show a complete year of global vegetation data using three pigments: chlorophyll, anthocyanins, and carotenoids. That multicolor imagery tells a clearer story about the health of land vegetation by detecting the smallest of variations in leaf colors.
“Earth is amazing. It’s humbling, being able to see life pulsing in colors across the whole globe,” said Morgaine McKibben, PACE applications lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s like the overview effect that astronauts describe when they look down at Earth, except we are looking through our technology and data.”
Anthocyanins, carotenoids, and chlorophyll data light up North America, highlighting vegetation and its health.Credit: NASA’s Scientific Visualization Studio Anthocyanins are the red pigments in leaves, while carotenoids are the yellow pigments – both of which we see when autumn changes the colors of trees. Plants use these pigments to protect themselves from fluctuations in the weather, adapting to the environment through chemical changes in their leaves. For example, leaves can turn more yellow when they have too much sunlight but not enough of the other necessities, like water and nutrients. If they didn’t adjust their color, it would damage the mechanisms they have to perform photosynthesis.
In the visualization, the data is highlighted in bright colors: magenta represents anthocyanins, green represents chlorophyll, and cyan represents carotenoids. The brighter the colors are, the more leaves there are in that area. The movement of these colors across the land areas show the seasonal changes over time.
In areas like the evergreen forests of the Pacific Northwest, plants undergo less seasonal change. The data highlights this, showing comparatively steadier colors as the year progresses.
The combination of these three pigments helps scientists pinpoint even more information about plant health.
“Shifts in these pigments, as detected by PACE, give novel information that may better describe vegetation growth, or when vegetation changes from flourishing to stressed,” said McKibben. “It’s just one of many ways the mission will drive increased understanding of our home planet and enable innovative, practical solutions that serve society.”
The Ocean Color Instrument on PACE collects hyperspectral data, which means it observes the planet in 100 different wavelengths of visible and near infrared light. It is the only instrument – in space or elsewhere – that provides hyperspectral coverage around the globe every one to two days. The PACE mission builds on the legacy of earlier missions, such as Landsat, which gathers higher resolution data but observes a fraction of those wavelengths.
In a paper recently published in Remote Sensing Letters, scientists introduced the mission’s first terrestrial data products.
“This PACE data provides a new view of Earth that will improve our understanding of ecosystem dynamics and function,” said Fred Huemmrich, research professor at the University of Maryland, Baltimore County, member of the PACE science and applications team, and first author of the paper. “With the PACE data, it’s like we’re looking at a whole new world of color. It allows us to describe pigment characteristics at the leaf level that we weren’t able to do before.”
As scientists continue to work with these new data, available on the PACE website, they’ll be able to incorporate it into future science applications, which may include forest monitoring or early detection of drought effects.
By Erica McNamee
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jun 05, 2025 EditorKate D. RamsayerContactKate D. Ramsayerkate.d.ramsayer@nasa.gov Related Terms
Earth Goddard Space Flight Center PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
4 min read Tundra Vegetation to Grow Taller, Greener Through 2100, NASA Study Finds
Article 10 months ago 8 min read NASA Researchers Study Coastal Wetlands, Champions of Carbon Capture
In the Florida Everglades, NASA’s BlueFlux Campaign investigates the relationship between tropical wetlands and greenhouse…
Article 3 months ago 5 min read NASA Takes to the Air to Study Wildflowers
Article 2 months ago View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA uses radio frequency (RF) for a variety of tasks in space, including communications. The Europa Clipper RF panel — the box with the copper wiring near the top — will send data carried by radio waves through the spacecraft between the electronics and eight antennas. Credit: NASA Even before we’re aware of heart trouble or related health issues, our bodies give off warning signs in the form of vibrations. Technology to detect these signals has ranged from electrodes and patches to watches. Now, an innovative wall-mounted technology is capable of monitoring vital signs. Advanced TeleSensors Inc. developed the Cardi/o Monitor with an exclusive license from NASA’s Jet Propulsion Laboratory in Southern California.
Over the course of five years, NASA engineers created a small, inexpensive, contactless device to measure vital signs, a challenging task partly because monitoring heart rate requires picking out motions of about one three-thousandth of an inch, which are easily swamped by other movement in the environment.
By the late 1990s, hardware and computing technology could meet the challenge, and the NASA JPL team created a prototype the size of a thick textbook. It would emit a radio beam toward a stationary person, working similarly to a radar, and algorithms differentiated cardiac and respiratory activity from the “noise” of other movements.
When Sajol Ghoshal, now CEO of Austin, Texas-based Advanced TeleSensors, participated in a demonstration of the prototype, he saw the potential for in-home monitoring. By then, developing an affordable device was possible due to the miniaturization of sensors and computing technology.
The Cardi/o vital sign monitor uses NASA-developed technology to continually monitor vital signs. The data collected can be sent directly to medical care providers, cutting down on the number of home healthcare visits. Credit: Advanced TeleSensors Inc. The Cardi/o Monitor is 3 inches square and mounts to a ceiling or wall. It can detect vital signs from up to 10 feet. Multiple devices can be scattered throughout a house, with a smartphone app controlling settings and displaying all data on a single dashboard. The algorithms NASA developed detect heartbeat and respiration, and the company added heart rate variability detection that indicates stress and sleep apnea.
If there’s an anomaly, such as a dramatic heart rate increase, an alert in the app calls attention to the situation. Up to six months of data is stored in a secure cloud, making it accessible to healthcare providers. This limits the need for regular in-person visits, which is particularly important for conditions such as infectious diseases, which can put medical professionals and other patients at risk.
Through the commercialization of this life-preserving technology, NASA is at the heart of advancing health solutions.
Read More Share
Details
Last Updated Apr 07, 2025 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
2 min read NASA Cloud Software Helps Companies Find their Place in Space
Article 2 weeks ago 2 min read NASA Expertise Helps Record all the Buzz
Article 3 weeks ago 2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
Article 1 month ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Jet Propulsion Laboratory – News
Solar System
View the full article
-
By Space Force
The TRICARE Online Patient Portal will no longer be available April 1.To retain health records, download them from the TOL Patient Portal before April 1.
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The space shuttle Endeavour is seen on launch pad 39a as a storm passes by prior to the rollback of the Rotating Service Structure (RSS), Thursday, April 28, 2011, at Kennedy Space Center in Cape Canaveral, Fla. During the 14-day mission, Endeavour and the STS-134 crew will deliver the Alpha Magnetic Spectrometer (AMS) and spare parts including two S-band communications antennas, a high-pressure gas tank and additional spare parts for Dextre. Launch is targeted for Friday, April 29 at 3:47 p.m. EDT.NASA It is important to protect humans from unintended electrical current flow during spaceflight. The thresholds for contact electrical shock are well established, and standards and requirements exist that minimize the probability of contact electrical shock. Current thresholds were chosen (vs. voltage thresholds) because body impedance varies depending on conditions such as wet/dry, AC/DC, voltage level, large/small contact area, but current thresholds and physiological effects do not change. By addressing electrical thresholds, engineering teams are able to provide the appropriate hazard controls, usually through additional isolation (beyond the body’s impedance), current limiters, and/or modifying the voltage levels. Risk assessment determined that the probability of an event was extremely low, and the most serious consequence is expected to be involuntary muscle contraction.
Lightning strikes the Launch Pad 39B protection system as preparations for launch of NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard continue, Saturday, Aug. 27, 2022, at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I flight test is the first integrated test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and supporting ground systems. Launch of the uncrewed flight test is targeted for no earlier than Aug. 29 at 8:33 a.m. ET. Photo Credit: (NASA/Bill Ingalls) Directed Acyclic Graph Files
+ DAG File Information (HSRB Home Page)
+ Electrical Shock Risk DAG and Narrative (PDF)
+ Electrical Shock Risk DAG Code (TXT)
Human System Risks Share
Details
Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Human System Risks Explore More
1 min read Risk of Toxic Substance Exposure
Article 15 mins ago 1 min read Risk of Urinary Retention
Article 15 mins ago 1 min read Risk to Vehicle Crew Egress Capability and Task Performance as Applied to Earth and Extraterrestrial Landings
Article 14 mins ago Keep Exploring Discover More Topics From NASA
Humans In Space
Missions
International Space Station
Solar System
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Astronauts Michael R. (Rich) Clifford and Linda M. Godwin, the assigned space-walking mission specialists for STS-76, go through a “pre-breathing” period on the Space Shuttle Atlantis’ middeck. This practice is normal procedure for space-walkers in preparation for their Extravehicular Activity (EVA) and the wearing of their Extravehicular Mobility Units (EMU). The photograph was taken with a 35mm camera by one of the crew members. Human exploration missions will require robust, flexible Extravehicular Activity (EVA) architecture protocols that include the use of a reduced-pressure cabin atmosphere enabling staged denitrogenation. Use of this atmosphere could result in compromised health and performance to the crewmember due to exposure to mild hypobaric hypoxia; of most concern are the potential effects on the increased intracranial pressure, visual impairment, cognitive performance, sensorimotor dysfunction, oxidative damage, and sleep quality. In addition to hypobaric hypoxia associated with staged denitrogenation, there are additional factors that can result in hypoxic exposure to the crewmember, such as cabin depressurization, Environmental Control, and Life Support System (ECLSS) failure, toxic exposure, or crewmember illness/injury.
Jan Zysko (left) and Rich Mizell (right) test a Personal Cabin Pressure Altitude Monitor in an altitude chamber at Tyndall Air Force Base in Florida. Zysko invented the pager-sized monitor that alerts wearers of a potentially dangerous or deteriorating cabin pressure altitude condition, which can lead to life-threatening hypoxia. Zysko is chief of the KSC Spaceport Engineering and Technology directorate’s data and electronic systems branch. Mizell is a Shuttle processing engineer. The monitor, which has drawn the interest of such organizations as the Federal Aviation Administration for use in commercial airliners and private aircraft, was originally designed to offer Space Shuttle and Space Station crew members added independent notification about any depressurizationNASA Directed Acyclic Graph Files
+ DAG File Information (HSRB Home Page)
+ Hypoxia Risk DAG and Narrative (PDF)
+ Hypoxia Risk DAG Code (TXT)
Human Research Program
+ Risk of Reduced Crew Health and Performance Due to Hypoxia
+ 2015 November Evidence Report (MSWord)
Human System Risks Share
Details
Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Human System Risks Explore More
1 min read Risk of Renal Stone Formation
Article 16 mins ago 1 min read Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity (Aerobic Risk)
Article 17 mins ago 1 min read Risk of Spaceflight Associated Neuro-ocular Syndrome
Article 16 mins ago Keep Exploring Discover More Topics From NASA
Humans In Space
Missions
International Space Station
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.