Jump to content

15 Years Ago: STS-130 Delivers Tranquility and Cupola to Space Station


Recommended Posts

  • Publishers
Posted

On Feb. 8, 2010, space shuttle Endeavour began its 24th trip into space, on the 20A assembly mission to the International Space Station, the 32nd shuttle flight to the orbiting lab. The STS-130 crew included Commander George Zamka, Pilot Terry Virts, and Mission Specialists Kathryn Hire, Stephen Robinson, Nicholas Patrick, and Robert Behnken. During the nearly 14-day mission, they worked jointly with the five-person Expedition 22 crew during nearly 10 days of docked operations. The mission’s primary objectives included delivering the Tranquility module and the cupola to the space station, adding 21 tons of hardware to the facility. Behnken and Patrick conducted three spacewalks to aid in the installation of Tranquility.  

Endeavour rolled out to Launch Pad 39A on Jan. 6, 2010, targeting a Feb. 7 launch. The crew arrived at NASA’s Kennedy Space Center in Florida on Feb. 3 to prepare for launch. Inclement weather delayed the initial launch attempt by 24 hours. On Feb. 8, at 4:14 a.m. EST, space shuttle Endeavour lifted off, carrying its six-person crew. The flight marked Robinson’s fourth trip into space, previously serving as a mission specialist on STS-85, STS-95, and STS-114, Zamka’s, Hire’s, Patrick’s, and Behnken’s second time in space, having flown on STS-120, STS-90, STS-116, and STS-123, respectively, while Virts enjoyed his first taste of weightlessness. 

After reaching orbit, the astronauts opened the payload bay doors, deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. They spent six hours on their second day in space conducting a detailed inspection of Endeavour’s nose cap and wing leading edges, taking turns operating the shuttle remote manipulator system, or robotic arm, and the Orbiter Boom Sensor System.  

On the mission’s third day, Zamka assisted by his crewmates brought Endeavour in for a docking with the space station. During the rendezvous, Zamka stopped the approach at 600 feet and completed a pitch maneuver so astronauts aboard the station could photograph Endeavour’s underside to look for any damage to the tiles. Zamka then manually guided Endeavour to a docking at the Pressurized Mating Adapter-2 attached to the Harmony module. After docking, the crews opened the hatches and the five-person station crew welcomed the six-member shuttle crew. Patrick and Expedition 22 Flight Engineer Timothy “T.J.” Creamer used the space station robotic arm to remove the inspection boom and hand it off to the shuttle arm operated by Hire and Virts. At the end of the day, Behnken and Partick entered the station’s airlock, reduced its pressure and breathed pure oxygen for an hour before and an hour after sleep to rid their bodies of nitrogen to prevent the bends. 

The astronauts completed the major transfer activity of the mission on flight day five, a highly choreographed spacewalk and robotics effort to move the Tranquility and cupola modules from the shuttle to the station. Behnken and Patrick exited the airlock to begin the mission’s first excursion, first venturing to the shuttle payload bay to remove launch locks from Tranquility. Virts and Hire used the station arm to remove the joined modules from the payload bay and attach it to the Unity module’s port side. Behnken and Partick connected temporary heater and data cables to the new module. This first spacewalk lasted six hours 32 minutes. The next day, the joint crews began outfitting Tranquility and preparing to relocate the cupola from the end of the module to its Earth-facing port. 

On the mission’s seventh day, some of the astronauts continued outfitting and configuring the new modules. In the meantime, Behnken and Patrick stepped outside for a five-hour 54-minute excursion, to install ammonia coolant loops and thermal blankets to protect the ammonia hoses, and outfitted Tranquility’s Earth-facing port to accept the cupola. 

The next day, Hire and Virts, assisted by Expedition 22 Commander Jeffery Williams, used the station’s robotic arm to relocate the cupola. On flight day 9, Behnken and Patrick operated the station arm to relocate the Pressurized Mating Adapter-3 from Harmony to Tranquility. The crews continued internal cargo transfers and began outfitting the cupola.  

On the mission’s 10th day, Patrick and Behnken completed their third and final spacewalk. During the five-hour 48-minute excursion, they removed thermal blankets and launch locks from the cupola, installed handrails, connected the second cooling loop on Tranquility, and connected heater and data cables. Inside the cupola, Hire and Virts installed the robotics workstation. Across their three spacewalks, Behnken and Patrick spent 18 hours 14 minutes outside. 

The crews spent flight day 11 outfitting Tranquility with systems racks and other equipment moved from the Destiny U.S. Laboratory module. Virts finished installing robotic workstation equipment in the Cupola. Behnken and Partick transferred their spacesuits back to the shuttle for return to Earth. The crew received a phone call from President Barack Obama and several schoolchildren. Zamka and Virts used the shuttle’s thrusters to reboost the space station.  

The next day, after holding a news conference with reporters on the ground, shuttle commander Zamka and station commander Williams held a ribbon-cutting ceremony to formally declare Tranquility and the cupola open for business. After a final meal together, the two crews held a farewell ceremony, returned to their respective spacecraft, and closed the hatches.  

On flight day 13, with Virts at the controls, Endeavour undocked from the space station, having spent nearly 10 days as a single spacecraft. The astronauts used the shuttle’s arm and boom sensors to perform a late inspection of Endeavour’s thermal protection system. On flight day 14, Zamka and Virts tested the orbiter’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing.  

On Feb. 22, Hire and Robinson closed Endeavour’s payload bay doors. The six astronauts donned their launch and entry suits and strapped themselves into their seats. Zamka and Virts fired Endeavour’s two Orbital Maneuvering System engines to bring them out of orbit and Zamka guided Endeavour to a smooth touchdown at Kennedy’s Shuttle Landing Facility. The landing capped off a successful mission of 13 days, 18 hours, six minutes and 217 orbits of the Earth. Workers at Kennedy towed Endeavour to the processing facility to prepare it for its next and final flight, STS-134 in May 2011, and the astronauts returned to Houston for a welcoming ceremony at Ellington Field. 

Watch the crew narrate a video about the STS-130 mission.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 Min Read NASA Seeks Commercial Feedback on Space Communication Solutions
      An illustration of a commercial space relay ecosystem. Credits: NASA / Morgan Johnson NASA is seeking information from U.S. and international companies about Earth proximity relay communication and navigation capabilities as the agency aims to use private industry satellite communications services for emerging agency science missions.

      “As part of NASA’s Communications Services Project, the agency is working with private industry to solve challenges for future exploration,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN Program. “Through this effort, NASA missions will have a greater ability to command spacecraft, resolve issues in flight, and bring home more data and scientific discoveries collected across the solar system.”

      In November 2024, NASA announced the TDRS (Tracking and Data Relay Satellite) system, the agency’s network of satellites relaying communications from the International Space Station, ground controls on Earth, and spacecraft, will support only existing missions.

      NASA, as one of many customers, will obtain commercial satellite services rather than owning and operating a replacement for the existing satellite system. As NASA transitions to commercial relay services, the agency will leverage commercial capabilities to ensure support for future missions and stimulate private investment into the Earth proximity region. Commercial service offerings could become available to NASA missions as early as 2028 and will continue to be demonstrated and validated through 2031.

      NASA’s SCaN issued a Request for Information on May 30. Responses are due by 5 p.m. EDT on Friday, July 11.

      NASA’s SCaN Program serves as the management office for the agency’s space communications and navigation. More than 100 NASA and non-NASA missions rely on SCaN’s two networks, the Near Space Network and the Deep Space Network, to support astronauts aboard the International Space Station and future Artemis missions, monitor Earth’s weather, support lunar exploration, and uncover the solar system and beyond.

      Learn more about NASA’s SCaN Program at:
      https://www.nasa.gov/scan
      Share
      Details
      Last Updated Jun 16, 2025 EditorJimi RussellContactMolly KearnsLocationGlenn Research Center Related Terms
      Commercial Space General Glenn Research Center The Future of Commercial Space Tracking and Data Relay Satellite (TDRS) Keep Exploring Discover More Topics From NASA
      Communicating with Missions
      Communications Services Project
      Commercial Space News
      Near Space Network

      View the full article
    • By European Space Agency
      Video: 00:01:40 Proba-3 artificially created what is normally a rare natural phenomenon: a total solar eclipse.
      In a world first, ESA’s Proba-3 satellites flew in perfect formation, blocking the Sun’s bright disc to reveal its fiery corona. This enigmatic outer layer burns millions of degrees hotter than the Sun’s surface and drives the solar storms that can disrupt life on Earth.
      With its first artificial eclipse, Proba-3 has captured detailed images of this mysterious region, offering scientists new insights into our star’s behaviour.
      Read the full story here.
      Access the related broadcast qality footage. 
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Instruments in space are helping scientists map wastewater plumes flowing into the Pacific Ocean from the heavily polluted Tijuana River, seen here with the San Diego sky-line to the north. NOAA Proof-of-concept results from the mouth of the Tijuana River in San Diego County show how an instrument called EMIT could aid wastewater detection.
      An instrument built at NASA’s Jet Propulsion Laboratory  to map minerals on Earth is now revealing clues about water quality. A recent study found that EMIT (Earth Surface Mineral Dust Source Investigation) was able to identify signs of sewage in the water at a Southern California beach.
      The authors of the study examined a large wastewater plume at the mouth of the Tijuana River, south of Imperial Beach near San Diego. Every year, millions of gallons of treated and untreated sewage enter the river, which carries pollutants through communities and a national reserve on the U.S.-Mexico border before emptying into the Pacific Ocean. Contaminated coastal waters have been known to impact human health — from beachgoers to U.S. Navy trainees — and harm marine ecosystems, fisheries, and wildlife.
      For decades scientists have tracked water quality issues like harmful algal blooms using satellite instruments that analyze ocean color. Shades that range from vibrant red to bright green can reveal the presence of algae and phytoplankton. But other pollutants and harmful bacteria are more difficult to monitor because they’re harder to distinguish with traditional satellite sensors.
      A plume spreads out to sea in this image captured off San Diego by the Sentinel-2 satellite on March 24, 2023. Both a spectroradiometer used to analyze water samples (yellow star) and NASA’s EMIT identified in the plume signs of a type of bacterium that can sicken humans and animals.SDSU/Eva Scrivner That’s where EMIT comes in. NASA’s hyperspectral instrument orbits Earth aboard the International Space Station, observing sunlight reflecting off the planet below. Its advanced optical components split the visible and infrared wavelengths into hundreds of color bands. By analyzing each satellite scene pixel by pixel at finer spatial resolution, scientists can discern what molecules are present based on their unique spectral “fingerprint.”
      Scientists compared EMIT’s observations of the Tijuana River plume with water samples they tested on the ground. Both EMIT and the ground-based instruments detected a spectral fingerprint pointing to phycocyanin, a pigment in cyanobacteria, an organism that can sicken humans and animals that ingest or inhale it.
      ‘Smoking Gun’
      Many beachgoers are already familiar with online water-quality dashboards, which often rely on samples collected in the field, said Christine Lee, a scientist at JPL in Southern California and a coauthor of the study. She noted the potential for EMIT to complement these efforts.
      “From orbit you are able to look down and see that a wastewater plume is extending into places you haven’t sampled,” Lee said. “It’s like a diagnostic at the doctor’s office that tells you, ‘Hey, let’s take a closer look at this.’”
      Lead author Eva Scrivner, a doctoral student at the University of Connecticut, said that the findings “show a ‘smoking gun’ of sorts for wastewater in the Tijuana River plume.” Scrivner, who led the study while at San Diego State University, added that EMIT could be useful for filling data gaps around intensely polluted sites where traditional water sampling takes a lot of time and money.
      EMIT’s Many Uses
      The technology behind EMIT is called imaging spectroscopy, which was pioneered at JPL in the 1980s. Imaging spectrometers developed at JPL over the decades have been used to support areas ranging from agriculture to forest health and firefighting.
      When EMIT was launched in July 2022, it was solely aimed at mapping minerals and dust in Earth’s desert regions. That same sensitivity enabled it to spot the phycocyanin pigments off the California coast.
      Scrivner hadn’t anticipated that an instrument initially devoted to exploring land could reveal insights about water. “The fact that EMIT’s findings over the coast are consistent with measurements in the field is compelling to water scientists,” she said. “It’s really exciting.”
      To learn more about EMIT, visit:
      https://earth.jpl.nasa.gov/emit/
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 
      Written by Sally Younger
      2025-078
      Share
      Details
      Last Updated Jun 12, 2025 Related Terms
      EMIT (Earth Surface Mineral Dust Source Investigation) Earth Earth Science Technology Office Human Dimensions International Space Station (ISS) Oceans Water on Earth Explore More
      3 min read Studying Storms from Space Station
      Article 4 hours ago 4 min read Welcome Home, Expedition 72 Crew! 
      Article 21 hours ago 6 min read NASA’s Ready-to-Use Dataset Details Land Motion Across North America
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 Min Read Studying Storms from Space Station
      An artist’s impression of a blue jet as observed from the space station. Credits: Mount Visual/University of Bergen/DTU Science in Space June 2025
      Scientists use instruments on the International Space Station to study phenomena in Earth’s ionosphere or upper atmosphere including thunderstorms, lightning, and transient luminous events (TLEs). TLEs take many forms, including blue jets, discharges that grow upward into the stratosphere from cloud tops, and colorful bursts of energy above storms called Stratospheric/Mesospheric Perturbations Resulting from Intense Thunderstorm Electrification or SPRITES.
      Red SPRITES are visible above a line of thunderstorms off the coast of South Africa.NASA TLEs can disrupt communication systems on the ground and pose a threat to aircraft and spacecraft. Understanding these phenomena also could improve atmospheric models and weather predictions. Because these events occur well above the altitudes of normal lightning and storm clouds, they are difficult to observe from the ground. ASIM, an investigation from ESA (European Space Agency), uses a monitor on the exterior of the space station to collect data on TLEs. These data are providing insights into how thunderstorms affect Earth’s atmosphere and helping to improve atmospheric models used for weather and climate predictions.
      ELVES and coronas
      A study based on ASIM data confirmed that lightning-like discharges at the tops of thunderstorms can create another type of TLE, massive glowing rings in the upper atmosphere known as Emissions of Light and VLF Perturbations from EMP events, or ELVES. This experiment showed that these discharges influence the ionosphere and helped scientists learn more about Earth and space weather.
      ASIM-based research also described the physical properties of different types of corona discharges in thunderstorm clouds. Corona discharges are linked to powerful but short-lived electrical bursts near the tops of clouds. The data provide a reference to support further investigation into the mechanisms behind these discharges and their role in the initiation of lightning, an important problem in lightning physics.
      Other researchers used ASIM measurements along with ground-based electric field measurements to determine the height of a blue discharge from a thundercloud.
      Cloud close-ups
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Lightning on Earth as captured from the space station.NASA Another ESA investigation, Thor-Davis, evaluated use of a special camera to photograph high-altitude thunderstorms through the windows of the space station’s cupola. The camera can observe thunderstorm electrical activity at up to 100,000 frames per second and could be a useful tool for space-based observation of severe electrical storms and other applications.
      Seeing storms from satellites
      Deployment of the Light-1 CubeSat from the space station.NASA The JAXA (Japan Aerospace Exploration Agency) investigation Light-1 CubeSat used detectors integrated into a compact satellite to observe terrestrial gamma-ray flashes in the upper atmosphere. These high intensity, energetic events can expose aircraft, aircraft electronics, and passengers to excessive radiation. Researchers are planning to compare data collected from the mission with ground-based observations to provide more comprehensive maps of lightning and thunderstorms in the atmosphere. Small satellite detectors could cost less and be manufactured in less time than other approaches.

      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Space Station Research Results
      Latest News from Space Station Research
      Station Researcher’s Guide Series
      View the full article
    • By NASA
      What does it take to gaze through time to our universe’s very first stars and galaxies?  
      NASA answers this question in its new documentary, “Cosmic Dawn: The Untold Story of the James Webb Space Telescope.” The agency’s original documentary, which chronicles the story of the most powerful telescope ever deployed in space, was released Wednesday, June 11.
      Cosmic Dawn offers an unprecedented glimpse into the delicate assembly, rigorous testing, and triumphant launch of NASA’s James Webb Space Telescope. The documentary showcases the complexity involved in creating a telescope capable of peering billions of years into the past.  
      Cosmic Dawn is now available for streaming on NASA’s YouTube, NASA+, and select local theaters. The trailer is available on NASA+ and YouTube.
      Relive the pitfalls and the triumphs of the world’s most powerful space telescope—from developing the idea of an impossible machine to watching with bated breath as it unfolded, hurtling through space a million miles away from Earth. Watch the Documentary on YouTube The film features never-before-seen footage captured by the Webb film crew, offering intimate access to the challenges and triumphs faced by the team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland — the birthplace of Webb.
      “At NASA, we’re thrilled to share the untold story of our James Webb Space Telescope in our new film ‘Cosmic Dawn,’ celebrating not just the discoveries, but the extraordinary people who made it all happen, for the benefit of humanity,” said Rebecca Sirmons, head of NASA+ at the agency’s headquarters in Washington.
      From its vantage point more than a million miles from Earth and a massive sunshield to block the light of our star, Webb’s First Deep Field  the deepest and sharpest infrared images of the universe that the world had seen.
      Webb’s images have dazzled people around the globe, capturing the very faint light of the first stars and galaxies that formed more than 13.5 billion years ago. These are baby pictures from an ancient past when the first objects were turning on and emitting light after the Big Bang. Webb has also given us new insights into black holes, planets both inside and outside of our own solar system, and many other cosmic phenomena.
      Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful. It was always going to make history
      Sophia roberts
      NASA Video Producer
      NASA’s biggest and most powerful space telescope was also its most technically complicated to build. It was harder still to deploy, with more than 300 critical components that had to deploy perfectly. The risks were high in this complicated dance of engineering, but the rewards were so much higher.
      “Webb was a mission that was going to be spectacular whether that was good or bad — if it failed or was successful,” said video producer Sophia Roberts, who chronicled the five years preceding Webb’s launch. “It was always going to make history.”
      NASA scientists like Nobel Laureate Dr. John Mather conceived Webb to look farther and deeper into origins of our universe using cutting edge infrared technology and massive mirrors to collect incredibly rich information about our universe, from the light of the first galaxies to detailed images of planets in our own solar system.
      To achieve this goal, NASA and its partners faced unprecedented hurdles.
      Webb’s development introduced questions that no one had asked before. How do you fit a telescope with the footprint of a tennis court into a rocket? How do you clean 18 sensitive mirrors when a single scratch could render them inoperable? How do you maintain critical testing while hurricane stormwater pours through ceilings?
      A technician inspects the James Webb Space Telescope primary mirrors at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.NASA/Sophia Roberts Cosmic Dawn captures 25 years of formidable design constraints, high-stake assessments, devastating natural disasters, a global pandemic and determined individuals who would let none of that get in the way of getting this monumental observatory to its rightful place in the cosmos.
      “There was nothing easy about Webb at all,” said Webb project manager Bill Ochs. “I don’t care what aspect of the mission you looked at.”
      Viewers will experience a one-of-a-kind journey as NASA and its partners tackle these dilemmas — and more — through ingenuity, teamwork, and unbreakable determination.
      “The inspiration of trying to discover something — to build something that’s never been built before, to discover something that’s never been known before — it keeps us going,” Mather said. “We are pleased and privileged in our position here at NASA to be able to carry out this [purpose] on behalf of the country and the world.”
      Bound by NASA’s 66-year commitment to document and share its work with the public, Cosmic Dawn details every step toward Webb’s launch and science results.
      Learn more at nasa.gov/cosmicdawn By Laine Havens,
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Katie Konans,
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jun 11, 2025 Related Terms
      James Webb Space Telescope (JWST) Goddard Space Flight Center NASA+ View the full article
  • Check out these Videos

×
×
  • Create New...