Jump to content

15 Years Ago: STS-130 Delivers Tranquility and Cupola to Space Station


Recommended Posts

  • Publishers
Posted

On Feb. 8, 2010, space shuttle Endeavour began its 24th trip into space, on the 20A assembly mission to the International Space Station, the 32nd shuttle flight to the orbiting lab. The STS-130 crew included Commander George Zamka, Pilot Terry Virts, and Mission Specialists Kathryn Hire, Stephen Robinson, Nicholas Patrick, and Robert Behnken. During the nearly 14-day mission, they worked jointly with the five-person Expedition 22 crew during nearly 10 days of docked operations. The mission’s primary objectives included delivering the Tranquility module and the cupola to the space station, adding 21 tons of hardware to the facility. Behnken and Patrick conducted three spacewalks to aid in the installation of Tranquility.  

Endeavour rolled out to Launch Pad 39A on Jan. 6, 2010, targeting a Feb. 7 launch. The crew arrived at NASA’s Kennedy Space Center in Florida on Feb. 3 to prepare for launch. Inclement weather delayed the initial launch attempt by 24 hours. On Feb. 8, at 4:14 a.m. EST, space shuttle Endeavour lifted off, carrying its six-person crew. The flight marked Robinson’s fourth trip into space, previously serving as a mission specialist on STS-85, STS-95, and STS-114, Zamka’s, Hire’s, Patrick’s, and Behnken’s second time in space, having flown on STS-120, STS-90, STS-116, and STS-123, respectively, while Virts enjoyed his first taste of weightlessness. 

After reaching orbit, the astronauts opened the payload bay doors, deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. They spent six hours on their second day in space conducting a detailed inspection of Endeavour’s nose cap and wing leading edges, taking turns operating the shuttle remote manipulator system, or robotic arm, and the Orbiter Boom Sensor System.  

On the mission’s third day, Zamka assisted by his crewmates brought Endeavour in for a docking with the space station. During the rendezvous, Zamka stopped the approach at 600 feet and completed a pitch maneuver so astronauts aboard the station could photograph Endeavour’s underside to look for any damage to the tiles. Zamka then manually guided Endeavour to a docking at the Pressurized Mating Adapter-2 attached to the Harmony module. After docking, the crews opened the hatches and the five-person station crew welcomed the six-member shuttle crew. Patrick and Expedition 22 Flight Engineer Timothy “T.J.” Creamer used the space station robotic arm to remove the inspection boom and hand it off to the shuttle arm operated by Hire and Virts. At the end of the day, Behnken and Partick entered the station’s airlock, reduced its pressure and breathed pure oxygen for an hour before and an hour after sleep to rid their bodies of nitrogen to prevent the bends. 

The astronauts completed the major transfer activity of the mission on flight day five, a highly choreographed spacewalk and robotics effort to move the Tranquility and cupola modules from the shuttle to the station. Behnken and Patrick exited the airlock to begin the mission’s first excursion, first venturing to the shuttle payload bay to remove launch locks from Tranquility. Virts and Hire used the station arm to remove the joined modules from the payload bay and attach it to the Unity module’s port side. Behnken and Partick connected temporary heater and data cables to the new module. This first spacewalk lasted six hours 32 minutes. The next day, the joint crews began outfitting Tranquility and preparing to relocate the cupola from the end of the module to its Earth-facing port. 

On the mission’s seventh day, some of the astronauts continued outfitting and configuring the new modules. In the meantime, Behnken and Patrick stepped outside for a five-hour 54-minute excursion, to install ammonia coolant loops and thermal blankets to protect the ammonia hoses, and outfitted Tranquility’s Earth-facing port to accept the cupola. 

The next day, Hire and Virts, assisted by Expedition 22 Commander Jeffery Williams, used the station’s robotic arm to relocate the cupola. On flight day 9, Behnken and Patrick operated the station arm to relocate the Pressurized Mating Adapter-3 from Harmony to Tranquility. The crews continued internal cargo transfers and began outfitting the cupola.  

On the mission’s 10th day, Patrick and Behnken completed their third and final spacewalk. During the five-hour 48-minute excursion, they removed thermal blankets and launch locks from the cupola, installed handrails, connected the second cooling loop on Tranquility, and connected heater and data cables. Inside the cupola, Hire and Virts installed the robotics workstation. Across their three spacewalks, Behnken and Patrick spent 18 hours 14 minutes outside. 

The crews spent flight day 11 outfitting Tranquility with systems racks and other equipment moved from the Destiny U.S. Laboratory module. Virts finished installing robotic workstation equipment in the Cupola. Behnken and Partick transferred their spacesuits back to the shuttle for return to Earth. The crew received a phone call from President Barack Obama and several schoolchildren. Zamka and Virts used the shuttle’s thrusters to reboost the space station.  

The next day, after holding a news conference with reporters on the ground, shuttle commander Zamka and station commander Williams held a ribbon-cutting ceremony to formally declare Tranquility and the cupola open for business. After a final meal together, the two crews held a farewell ceremony, returned to their respective spacecraft, and closed the hatches.  

On flight day 13, with Virts at the controls, Endeavour undocked from the space station, having spent nearly 10 days as a single spacecraft. The astronauts used the shuttle’s arm and boom sensors to perform a late inspection of Endeavour’s thermal protection system. On flight day 14, Zamka and Virts tested the orbiter’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing.  

On Feb. 22, Hire and Robinson closed Endeavour’s payload bay doors. The six astronauts donned their launch and entry suits and strapped themselves into their seats. Zamka and Virts fired Endeavour’s two Orbital Maneuvering System engines to bring them out of orbit and Zamka guided Endeavour to a smooth touchdown at Kennedy’s Shuttle Landing Facility. The landing capped off a successful mission of 13 days, 18 hours, six minutes and 217 orbits of the Earth. Workers at Kennedy towed Endeavour to the processing facility to prepare it for its next and final flight, STS-134 in May 2011, and the astronauts returned to Houston for a welcoming ceremony at Ellington Field. 

Watch the crew narrate a video about the STS-130 mission.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA The Trump-Vance Administration released toplines of the President’s budget for Fiscal Year 2026 on Friday. The budget accelerates human space exploration of the Moon and Mars with a fiscally responsible portfolio of missions.
      “This proposal includes investments to simultaneously pursue exploration of the Moon and Mars while still prioritizing critical science and technology research,” said acting NASA Administrator Janet Petro. “I appreciate the President’s continued support for NASA’s mission and look forward to working closely with the administration and Congress to ensure we continue making progress toward achieving the impossible.”
      Increased commitment to human space exploration in pursuit of exploration of both the Moon and Mars. By allocating more than $7 billion for lunar exploration and introducing $1 billion in new investments for Mars-focused programs, the budget ensures America’s human space exploration efforts remain unparalleled, innovative, and efficient. Refocus science and space technology resources to efficiently execute high priority research. Consistent with the administration’s priority of returning to the Moon before China and putting an American on Mars, the budget will advance priority science and research missions and projects, ending financially unsustainable programs including Mars Sample Return. It emphasizes investments in transformative space technologies while responsibly shifting projects better suited for private sector leadership. Transition the Artemis campaign to a more sustainable, cost-effective approach to lunar exploration. The SLS (Space Launch System) rocket and Orion capsule will be retired after Artemis III, paving the way for more cost-effective, next-generation commercial systems that will support subsequent NASA lunar missions. The budget also ends the Gateway Program, with the opportunity to repurpose already produced components for use in other missions. International partners will be invited to join these renewed efforts, expanding opportunities for meaningful collaboration on the Moon and Mars. Continue the process of transitioning the International Space Station to commercial replacements in 2030, focusing onboard research on efforts critical to the exploration of the Moon and Mars. The budget reflects the upcoming transition to a more cost-effective, open commercial approach to human activities in low Earth orbit by reducing the space station’s crew size and onboard research, preparing for the safe decommissioning of the station and its replacement by commercial space stations. Work to minimize duplication of efforts and most efficiently steward the allocation of American taxpayer dollars. This budget ensures NASA’s topline enables a financially sustainable trajectory to complete groundbreaking research and execute the agency’s bold mission. Focus NASA’s resources on its core mission of space exploration. This budget ends climate-focused “green aviation” spending while protecting the development of technologies with air traffic control and other U.S. government and commercial applications, producing savings. This budget also will ensure continued elimination any funding toward misaligned DEIA initiatives, instead designating that money to missions capable of advancing NASA’s core mission. NASA will continue to inspire the next generation of explorers through exciting, ambitious space missions that demonstrate American leadership in space. NASA will coordinate closely with its partners to execute these priorities and investments as efficiently and effectively as possible.
      Building on the President’s promise to increase efficiency this budget pioneers a focused, innovative, and fiscally-responsible path to America’s next great era of human space exploration.
      Learn more about the President’s budget request for NASA:
      https://www.nasa.gov/budget
      -end-
      Bethany Stevens
      Headquarters, Washington
      771-216-2606
      bethany.c.stevens@nasa.gov
      Share
      Details
      Last Updated May 02, 2025 EditorJennifer M. DoorenLocationNASA Headquarters Related Terms
      Budget & Annual Reports View the full article
    • By European Space Agency
      Image: The Ocean and Land Colour Instrument on Copernicus Sentinel-3 captured this image of Earth’s biggest iceberg, A23a, on 5 April 2025. View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s SPHEREx mission is observing the entire sky in 102 infrared colors, or wavelengths of light not visible to the human eye. This image shows a section of sky in one wavelength (3.29 microns), revealing a cloud of dust made of a molecule similar to soot or smoke.NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), but the dust cloud is no longer visible. The molecules that compose the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color.NASA/JPL-Caltech After weeks of preparation, the space observatory has begun its science mission, taking about 3,600 unique images per day to create a map of the cosmos like no other.
      Launched on March 11, NASA’s SPHEREx space observatory has spent the last six weeks undergoing checkouts, calibrations, and other activities to ensure it is working as it should. Now it’s mapping the entire sky — not just a large part of it — to chart the positions of hundreds of millions of galaxies in 3D to answer some big questions about the universe. On May 1, the spacecraft began regular science operations, which consist of taking about 3,600 images per day for the next two years to provide new insights about the origins of the universe, galaxies, and the ingredients for life in the Milky Way.
      This video shows SPHEREx’s field of view as it scans across one section of sky inside the Large Magellanic Cloud, with rainbow colors representing the infrared wavelengths the telescope’s detectors see. The view from one detector array moves from purple to green, followed by the second array’s view, which changes from yellow to red. The images are looped four times. NASA/JPL-Caltech “Thanks to the hard work of teams across NASA, industry, and academia that built this mission, SPHEREx is operating just as we’d expected and will produce maps of the full sky unlike any we’ve had before,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “This new observatory is adding to the suite of space-based astrophysics survey missions leading up to the launch of NASA’s Nancy Grace Roman Space Telescope. Together with these other missions, SPHEREx will play a key role in answering the big questions about the universe we tackle at NASA every day.”
      From its perch in Earth orbit, SPHEREx peers into the darkness, pointing away from the planet and the Sun. The observatory will complete more than 11,000 orbits over its 25 months of planned survey operations, circling Earth about 14½ times a day. It orbits Earth from north to south, passing over the poles, and each day it takes images along one circular strip of the sky. As the days pass and the planet moves around the Sun, SPHEREx’s field of view shifts as well so that after six months, the observatory will have looked out into space in every direction.
      When SPHEREx takes a picture of the sky, the light is sent to six detectors that each produces a unique image capturing different wavelengths of light. These groups of six images are called an exposure, and SPHEREx takes about 600 exposures per day. When it’s done with one exposure, the whole observatory shifts position — the mirrors and detectors don’t move as they do on some other telescopes. Rather than using thrusters, SPHEREx relies on a system of reaction wheels, which spin inside the spacecraft to control its orientation.
      Hundreds of thousands of SPHEREx’s images will be digitally woven together to create four all-sky maps in two years. By mapping the entire sky, the mission will provide new insights about what happened in the first fraction of a second after the big bang. In that brief instant, an event called cosmic inflation caused the universe to expand a trillion-trillionfold.
      “We’re going to study what happened on the smallest size scales in the universe’s earliest moments by looking at the modern universe on the largest scales,” said Jim Fanson, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Southern California. “I think there’s a poetic arc to that.”
      Cosmic inflation subtly influenced the distribution of matter in the universe, and clues about how such an event could happen are written into the positions of galaxies across the universe. When cosmic inflation began, the universe was smaller than the size of an atom, but the properties of that early universe were stretched out and influence what we see today. No other known event or process involves the amount of energy that would have been required to drive cosmic inflation, so studying it presents a unique opportunity to understand more deeply how our universe works.
      “Some of us have been working toward this goal for 12 years,” said Jamie Bock, the mission’s principal investigator at Caltech and JPL. “The performance of the instrument is as good as we hoped. That means we’re going to be able to do all the amazing science we planned on and perhaps even get some unexpected discoveries.”
      Color Field
      The SPHEREx observatory won’t be the first to map the entire sky, but it will be the first to do so in so many colors. It observes 102 wavelengths, or colors, of infrared light, which are undetectable to the human eye. Through a technique called spectroscopy, the telescope separates the light into wavelengths — much like a prism creates a rainbow from sunlight — revealing all kinds of information about cosmic sources.
      For example, spectroscopy can be harnessed to determine the distance to a faraway galaxy, information that can be used to turn a 2D map of those galaxies into a 3D one. The technique will also enable the mission to measure the collective glow from all the galaxies that ever existed and see how that glow has changed over cosmic time.
      And spectroscopy can reveal the composition of objects. Using this capability, the mission is searching for water and other key ingredients for life in these systems in our galaxy. It’s thought that the water in Earth’s oceans originated as frozen water molecules attached to dust in the interstellar cloud where the Sun formed.
      The SPHEREx mission will make over 9 million observations of interstellar clouds in the Milky Way, mapping these materials across the galaxy and helping scientists understand how different conditions can affect the chemistry that produced many of the compounds found on Earth today.
      More About SPHEREx
      The SPHEREx mission is managed by JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      For more about SPHEREx, visit:
      https://science.nasa.gov/mission/spherex/
      News Media Contact
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      2025-063
      Share
      Details
      Last Updated May 01, 2025 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Jet Propulsion Laboratory The Search for Life The Universe Explore More
      4 min read NASA’s Chandra Diagnoses Cause of Fracture in Galactic “Bone”
      Article 3 hours ago 3 min read The Universe’s Brightest Lights Have Some Dark Origins
      Did you know some of the brightest sources of light in the sky come from…
      Article 1 day ago 8 min read How to Contribute to Citizen Science with NASA
      A cell phone, a computer—and your curiosity—is all you need to become a NASA citizen…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 Min Read NASA Invests in Future STEM Workforce Through Space Grant Awards 
      NASA is awarding up to $870,000 annually to 52 institutions across the United States, the District of Columbia, and Puerto Rico over the next four years. The investments aim to create opportunities for the next generation of innovators by supporting workforce development, science, technology, engineering and math education, and aerospace collaboration nationwide. 
      The Space Grant College and Fellowship Program (Space Grant), established by Congress in 1989, is a workforce development initiative administered through NASA’s Office of STEM Engagement (OSTEM). The program’s mission is to produce a highly skilled workforce prepared to advance NASA’s mission and bolster the nation’s aerospace sector. 
      “The Space Grant program exemplifies NASA’s commitment to cultivating a new generation of STEM leaders,” said Torry Johnson, deputy associate administrator of the STEM Engagement Program at NASA Headquarters in Washington. “By partnering with institutions across the country, we ensure that students have the resources, mentorship, and experiences needed to thrive in the aerospace workforce.” 
      The following is a complete list of awardees: 
      University of Alaska, Fairbanks  University of Alabama, Huntsville  University of Arkansas, Little Rock  University of Arizona  University of California, San Diego  University of Colorado, Boulder  University of Hartford, Connecticut  American University, Washington, DC  University of Delaware  University of Central Florida  Georgia Institute of Technology  University of Hawaii, Honolulu  Iowa State University, Ames  University of Idaho, Moscow  University of Illinois, Urbana-Champaign  Purdue University, Indiana  Wichita State University, Kansas  University of Kentucky, Lexington  Louisiana State University and A&M College  Massachusetts Institute of Technology  Johns Hopkins University, Maryland  Maine Space Grant Consortium  University of Michigan, Ann Arbor  University of Minnesota  Missouri University of Science and Technology  University of Mississippi  Montana State University, Bozeman  North Carolina State University  University of North Dakota, Grand Forks  University of Nebraska, Omaha  University of New Hampshire, Durham  Rutgers University, New Brunswick, New Jersey  New Mexico State University  Nevada System of Higher Education  Cornell University, New York  Ohio Aerospace Institute  University of Oklahoma  Oregon State University  Pennsylvania State University  University of Puerto Rico  Brown University, Rhode Island  College of Charleston, South Carolina  South Dakota School of Mines & Technology  Vanderbilt University, Tennessee  University of Texas, Austin  University of Utah, Salt Lake City  Old Dominion University Research Foundation, Virginia  University of Vermont, Burlington  University of Washington, Seattle  Carthage College, Wisconsin  West Virginia University  University of Wyoming  Space Grant operates through state-based consortia, which include universities, university systems, associations, government agencies, industries, and informal education organizations engaged in aerospace activities. Each consortium’s lead institution coordinates efforts within its state, expanding opportunities for students and researchers while promoting collaboration with NASA and aerospace-related industries nationwide. 
      To learn more about NASA’s missions, visit: https://www.nasa.gov/ 

      View the full article
    • By NASA
      Inside a laboratory in the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida, a payload implementation team member harvests ‘Outredgeous’ romaine lettuce growing in the Advanced Plant Habitat ground unit on Thursday, April 24, 2025. The harvest is part of the ground control work supporting Plant Habitat-07, which launched to the International Space Station aboard NASA’s SpaceX 31st commercial resupply services mission.
      The experiment focuses on studying how optimal and suboptimal moisture conditions affect plant growth, nutrient content, and the plant microbiome in microgravity. Research like this continues NASA’s efforts to grow food that is not only safe but also nutritious for astronauts living and working in the harsh environment of space.
      The ‘Outredgeous’ romaine lettuce variety was first grown aboard the space station in 2014, and Plant Habitat-07 builds on that legacy, using the station’s Advanced Plant Habitat to expand understanding of how plants adapt to spaceflight conditions. Findings from this work will support future long-duration missions to the Moon, Mars, and beyond, and could also lead to agricultural advances here on Earth.
      Image credit: NASA/Kim Shiflett
      View the full article
  • Check out these Videos

×
×
  • Create New...