Members Can Post Anonymously On This Site
NASA Glenn Holds Day of Remembrance
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ResilienX employees Angelo Niforatos, left, and Ryan Pleskach, right, overview the NASA safety tools integrated into the company’s commercial system, July 11, 2025, at the ResilienX Headquarters in Syracuse, New York. Credit: ResilienX A future with advanced air mobility aircraft populating the skies will require the U.S. to implement enhanced preflight planning that can mitigate potential risks well before takeoff – and NASA is working to develop the tools to make that happen.
Preflight planning is critical to ensuring safety in the complex, high-risk environments of the future airspace. Timely, predictive, and up-to-date risk assessment within a single platform makes it much easier for drone or air taxi operators to check flight plans for high-risk concerns.
NASA is working on tools to deliver those services, and in June, the agency and aviation safety company ResilienX Inc. demonstrated how these tools can be integrated into commercial systems.
During a series of tests conducted at ResilienX’s facility in Syracuse, New York, researchers used NASA services that allowed flight operators to submit flight plans prior to departure, obtain risk assessment results, and then decide whether to proceed with flights or change their flight plans and re-assess risks. Allowing operators to perform these tasks quickly reduces the safety risk to flight passengers as well as humans on the ground.
The three NASA-developed services are intended to assess unique risks associated with highly automated aircraft flying at low altitudes over cities.
The partnership was managed under a Phase III NASA Small Business Innovation Research (SBIR) contract, which is an extension of prior work to assess weather-related risks. This collaboration is already leading to direct technology transfer of safety systems into ResilienX’s platform. The partnership is also intended to provide indirect benefits for ResilienX partners and customers, such as the U.S. Air Force and regional operators, helping to advance the overall safety of future airspace operations.
This work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission. The mission seeks to deliver data, findings, and recommendations to guide the industry’s development of future air taxis and drones.
Share
Details
Last Updated Aug 22, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
Armstrong Flight Research Center Advanced Air Mobility Aeronautics Aeronautics Research Mission Directorate Airspace Operations and Safety Program Drones & You Small Business Innovation Research / Small Business System-Wide Safety Explore More
5 min read National Aviation Day: Celebrating NASA’s Heritage While Charting Our Future
Article 3 days ago 5 min read NASA Invites You to Celebrate National Aviation Day 2025
Article 3 days ago 4 min read NASA Tests Research Aircraft to Improve Air Taxi Flight Controls
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 Min Read NASA Shares Final Contenders for Artemis II Moon Mascot Design Contest
NASA is down to 25 finalists for the Artemis II zero gravity indicator set to fly with the mission’s crew around the Moon and back next year.
Astronauts Reid Wiseman, Victor Glover, and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will soon select one of the finalist designs to join them inside the Orion spacecraft as their Moon mascot.
“The Artemis II zero gravity indicator will be special for the crew,” said Reid Wiseman, Artemis II commander. “In a spacecraft filled with complex hardware to keep the crew alive in deep space, the indicator is a friendly and useful way to highlight the human element that is so critical to our exploration of the universe. Our crew is excited about these designs from across the world and we are looking forward to bringing the winner along for the ride.”
A zero gravity indicator is a small plush item that typically rides with a crew to visually indicate when they are in space. For the first eight minutes after liftoff, the crew and their indicator nearby will still be pushed into their seats by gravity, and the force of the climb into space. When the main engines of the SLS (Space Launch System) rocket’s core stage cut off, gravity’s restraints are lifted, but the crew will still be strapped safely into their seats – their zero gravity indicator’s ability to float will provide proof that they’ve made it into space.
Artemis II will mark the first time that the public has had a hand in creating the crew’s mascot.
These designs – ideas spanning from Moon-related twists on Earthly creatures to creative visions of exploration and discovery – were selected from more than 2,600 submissions from over 50 countries, including from K-12 students. The finalists represent 10 countries including the United States, Canada, Colombia, Finland, France, Germany, Japan, Peru, Singapore, and Wales.
View the finalist designs:
Lucas Ye | Mountain View, California“Rise” Kenan Ziyan | Canyon, Texas“Zappy Zebra” Royal School, SKIES Space Club | Winnipeg, Manitoba, Canada“Luna the Space Polar Bear” Garden County Schools | Oshkosh, Nebraska“Team GarCo” Richellea Quinn Wijaya | Singapore“Parsec – The Bird That Flew to the Moon” Anzhelika Iudakova | Finland“Big Steps of Little Octopus” Congressional School | Falls Church, Virginia“Astra-Jelly” Congressional School | Falls Church, Virginia“Harper, Chloe, and Mateo’s ZGI” Alexa Pacholyk | Madison, Connecticut“Artemis” Leila Fleury | Rancho Palos Verdes, California“Beeatrice” Oakville Trafalgar School | Oakville, Ontario, Canada“Lepus the Moon Rabbit” Avon High School | Avon, Connecticut“Sal the Salmon” Daniela Colina | Lima, Peru“Corey the Explorer” Caroline Goyer-Desrosiers | St. Eustache, Quebec, Canada“Flying Squirrel Ready for Its Take Off to Space!” Giulia Bona | Berlin, Germany“Art & the Giant” Tabitha Ramsey | Frederick, Maryland“Lunar Crust-acean” Gabriela Hadas | Plano, Texas“Celestial Griffin” Savon Blanchard | Pearland, Texas“Soluna Flier” Ayako Moriyama | Kyoto, Japan“MORU: A Cloud Aglow with Moonlight and Hope” Johanna Beck | McPherson, Kansas“Creation Mythos” Guillaume Truong | Toulouse, France“Space Mola-mola (aka Moon Fish) Plushie” Arianna Robins | Rockledge, Florida“Terra the Titanosaurus” Sandy Moya | Madrid, Colombia“MISI: Guardian of the Journey” Bekah Crowmer | Mooresville, Indiana“Mona the Moon Moth” Courtney John | Llanelli, Wales“Past, Present, Future” In March, NASA announced it was seeking design ideas from global creators for a zero gravity indicator to fly aboard Artemis II, the first crewed mission under NASA’s Artemis campaign. Creators were asked to submit ideas representing the significance of Artemis, the mission, or exploration and discovery, and to meet specific size and materials requirements. Crowdsourcing company Freelancer facilitated the contest on NASA’s behalf though the NASA Tournament Lab, managed by the agency’s Space Technology Mission Directorate.
Once the crew has selected a final design, NASA’s Thermal Blanket Lab will fabricate it for flight. The indicator will be tethered inside Orion before launch.
The approximately 10-day mission is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.
Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars.
View the full article
-
By Space Force
The U.S. Air Force and Space Force held its first National Signing Day ceremony at the historic Rayburn House Office building, Aug. 15.
View the full article
-
By NASA
NASA’s X-59 quiet supersonic research aircraft sits on the ramp at Lockheed Martin Skunk Works in Palmdale, California during sunrise, shortly after completion of painting in December 2023.Credit: NASA/Steve Freeman As we observe National Aviation Day Tuesday – a tribute to Orville Wright’s birthday – let’s reflect on both America’s and NASA’s aviation heritage and share how we are pushing the boundaries of flight for the nation’s future. Modern NASA grew from the National Advisory Committee for Aeronautics (NACA), an agency created by Congress in 1915 to advance U.S. aviation. When President Eisenhower signed the National Aeronautics and Space Act of 1958, NACA was dissolved and its people, laboratories and research programs became the foundation of NASA. These intrepid men and women are the cornerstone of the world’s most capable aerospace industry and their legacy lives on today across all facets of the agency.
The most significant aviation milestones in the twentieth century were achieved through both NASA and NACA research and through the courage of pioneering test pilots. In 1947, the joint NACA/U.S. Army Air Forces (later the U.S. Air Force, or USAF) developed Bell X‑1 flew faster than the speed of sound, shattering the mythical “sound barrier.” This breakthrough, enabled by NACA wind-tunnel data and high-speed aerodynamic expertise, made supersonic flight a reality and led directly to NACA Test Pilot Scott Crossfield being the first human to reach Mach 2, twice the speed of sound, in the Douglass DD558-II a mere six years later. During the X‑15 program of the 1960s, legendary NASA Test Pilots Joe Walker, John McKay, Neil Armstrong, Milt Thompson, and Bill Dana piloted nearly half of the program’s sorties and flew the rocket-powered research plane at altitudes up to 354,200 feet and speeds of 4,520 mph (Mach 6.7).
The NASA/USAF-developed North American X‑15 became the world’s first reusable hypersonic aerospace vehicle, reaching space (above 50 miles altitude) on 11 separate missions; it provided essential data on materials, flight control and pilot physiology that helped shape the agency’s Mercury, Gemini, Apollo and Space Shuttle programs. These milestones remind us that our nation’s accomplishments are the result of visionary NASA, Department of Defense, industry engineers, and test pilots working together to achieve audacious goals.
NASA’s commitment to aviation innovation did not stop with early experimental high-speed aircraft. In the 1990s, the U.S. general aviation industry faced a steep decline – production fell from 18,000 aircraft in 1978 to fewer than 1,000 in 1993. NASA saw an opportunity: we envisioned a Small Aircraft Transportation System in which safe, efficient general aviation planes could revitalize a critical industry. To enable that vision, NASA partnered with the Federal Aviation Administration, industry, universities, and non‑profits to create the Advanced General Aviation Transport Experiments (AGATE) consortium in 1994. The AGATE consortium developed safer cockpit displays, crashworthiness improvements, efficient airfoils, and modern manufacturing techniques. These innovations transformed U.S. general aviation, helping spawn industry successes like the Cirrus SR20 and SR22 family of aircraft, which incorporate NASA-derived composite structures and safety features.
In 2004, NASA’s unmanned X‑43A Hyper-X broke world speed records for air‑breathing aircraft, flying at Mach 6.8 and later Mach 9.6. Those flights demonstrated practical scramjet propulsion and proved that hypersonic cruise flight is achievable.
Today, we are building on this legacy and pushing the envelope with the X-59. Later this year, NASA Test Pilot Nils Larson will usher in a new era of quiet supersonic flight when he pilots the X‑59 Quesst’s first flight out of NASA’s Armstrong Flight Research Center in Edwards, California. The experimental aircraft, designed to fly at 1.4 times the speed of sound while producing only a gentle sonic “thump” instead of the traditional loud sonic boom, will provide data vital to achieving the vision in President Donald J. Trump’s Executive Order “Leading the World in Supersonic Flight.”
Hypersonics research is another pillar to our 21st‑century vision. Lessons from the X‑15, X‑43, and Space Shuttle inform our study of high-temperature materials, flight controls and propulsion. These technologies will not only bolster national security but will also spur the development of ultrafast civil transports, shrinking the world even further. We are also investing in 21st century propulsion, additive manufacturing, and autonomy for light aircraft while also developing advanced air traffic control systems. Partnering with U.S. aerospace industry and the FAA, we will bring true 21st century technology into light general aviation aircraft, ensuring America remains at the forefront of aviation innovation.
I am continually inspired by the ingenuity of our past and the promise of our future. Our roots in NACA remind us that a small group of dedicated men and women can change the world. From the Wright brothers’ pioneering work to the supersonic and hypersonic records set by NASA pilots and vehicles, we have consistently expanded the boundaries of what is possible in flight. Looking ahead, our pursuit of quiet supersonic aircraft, hypersonic technologies, and revitalized general aviation will keep the U.S. aviation industry strong and sustainable for decades to come. On National Aviation Day, we celebrate not only our history but also the teamwork and vision that will carry us into the next century of flight.
Higher, Farther, Faster!
Todd C. Ericson is a senior advisor to the NASA administrator for aerospace research and development
Share
Details
Last Updated Aug 19, 2025 EditorJennifer M. Dooren Related Terms
Aeronautics Flight Innovation NASA Aircraft Supersonic Flight View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.