Jump to content

Recommended Posts

  • Publishers
Posted

The portfolio of current NESC technical activities reaches across mission directorates and programs encompassing design, test, and flight phases.

ISS PrK Independent Assessment 
The NESC is assessing the ongoing leak in the ISS Russian segment, PrK, the segment’s remaining life, and how to manage the risk of potential failure. 

ISS pictured from the SpaceX Crew Dragon Endeavour.
ISS pictured from the SpaceX Crew Dragon Endeavour.

Orion Crew Module Heatshield Avcoat Char Investigation 
The NESC provided thermal experts to the Artemis I Char Loss Team investigation of heatshield performance on the Artemis I return. The NESC is working with the team to ensure the observed material loss is understood so that decisions may be made regarding use for upcoming Artemis missions. 

An artist's illustration of Orion crew module entering the Earth's atmosphere. View from Artemis I crew cabin window showing material loss during entry (foreground).
An artist’s illustration of Orion crew module entering the Earth’s atmosphere. View from Artemis I crew cabin window showing material loss during entry (foreground).

CFT Flight Anomaly Support  
NESC discipline experts provided real-time support to CCP to aid in determining the CFT flight anomaly causes and risks associated with a crewed return. The NESC performed propulsion system testing for predicted mission profiles at WSTF.  

Boeing CST-100 Starliner docked to ISS during CFT mission.
Boeing CST-100 Starliner docked to ISS during CFT mission.

Total Ionizing Dose Tolerance of Power Electronics on Europa Clipper 
The NESC provided power electronics and avionics expertise to JPL’s Europa Clipper tiger team to help evaluate the radiation tolerance of key spacecraft electronics, assisting in a risk-based launch decision. 

Illustration depicting the Europa Clipper.
Illustration depicting the Europa Clipper.

Psyche Cold-Gas Thruster Technical Advisory Team Support 
In support of a successful launch, NESC augmented the Psyche team’s investigation into increased understanding of the spacecraft’s cold-gas thrusters and aided the project’s risk-informed decisions regarding mitigations and readiness for launch. 

Illustration of NASA’s Psyche spacecraft headed to the metal-rich asteroid Psyche in the main asteroid belt between Mars and Jupiter.
Illustration of NASA’s Psyche spacecraft headed to the metal-rich asteroid Psyche in the main asteroid belt between Mars and Jupiter.

X-59 Fuel Tank Assessment 
The NESC is assisting in the evaluation of risks associated with the installation and operation of strain gages in the fuel storage system on X-59 hardware. The work includes analysis, modeling, and the development of mitigation strategies. 

NASA’s X-59 quiet supersonic research aircraft sits on the ramp at Lockheed Martin Skunk Works in Palmdale, California.
NASA’s X-59 quiet supersonic research aircraft sits on the ramp at Lockheed Martin Skunk Works in Palmdale, California.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An astronaut glove designed for International Space Station spacewalks is prepped for testing in a chamber called CITADEL at NASA JPL. Conducted at temperatures as frigid as those Artemis III astronauts will see on the lunar South Pole, the testing supports next-generation spacesuit development.NASA/JPL-Caltech Engineers with NASA Johnson and the NASA Engineering and Safety Center ready an astronaut glove for insertion into the main CITADEL chamber at JPL. The team tested the glove in vacuum at minus 352 degrees Fahrenheit (minus 213 degrees Celsius).NASA/JPL-Caltech A JPL facility built to support potential robotic spacecraft missions to frozen ocean worlds helps engineers develop safety tests for next-generation spacesuits.
      When NASA astronauts return to the Moon under the Artemis campaign and eventually venture farther into the solar system, they will encounter conditions harsher than any humans have experienced before. Ensuring next-generation spacesuits protect astronauts requires new varieties of tests, and a one-of-a-kind chamber called CITADEL (Cryogenic Ice Testing, Acquisition Development, and Excavation Laboratory) at NASA’s Jet Propulsion Laboratory in Southern California is helping.
      Built to prepare potential robotic explorers for the frosty, low-pressure conditions on ocean worlds like Jupiter’s frozen moon Europa, CITADEL also can evaluate how spacesuit gloves and boots hold up in extraordinary cold. Spearheaded by the NASA Engineering and Safety Center, a glove testing campaign in CITADEL ran from October 2023 to March 2024. Boot testing, initiated by the Extravehicular Activity and Human Surface Mobility Program at NASA’s Johnson Space Center in Houston, took place from October 2024 to January 2025.

      An astronaut boot — part of a NASA lunar spacesuit prototype, the xEMU — is readied for testing in JPL’s CITADEL. A thick aluminum plate stands in for the cold surface of the lunar South Pole, where Artemis III astronauts will confront conditions more extreme than any humans have yet experienced.NASA/JPL-Caltech In coming months, the team will adapt CITADEL to test spacesuit elbow joints to evaluate suit fabrics for longevity on the Moon. They’ll incorporate abrasion testing and introduce a simulant for lunar regolith, the loose material that makes up the Moon’s surface, into the chamber for the first time.
      “We’ve built space robots at JPL that have gone across the solar system and beyond,” said Danny Green, a mechanical engineer who led the boot testing for JPL. “It’s pretty special to also use our facilities in support of returning astronauts to the Moon.”
      Astronauts on the Artemis III mission will explore the Moon’s South Pole, a region of much greater extremes than the equatorial landing sites visited by Apollo-era missions. They’ll spend up to two hours at a time inside craters that may contain ice deposits potentially important to sustaining long-term human presence on the Moon. Called permanently shadowed regions, these intriguing features rank among the coldest locations in the solar system, reaching as low as minus 414 degrees Fahrenheit (minus 248 degrees Celsius). The CITADEL chamber gets close to those temperatures.
      Engineers from JPL and NASA Johnson set up a test of the xEMU boot inside CITADEL. Built to prepare potential robotic explorers for conditions on ocean worlds like Jupiter’s moon Europa, the chamber offers unique capabilities that have made it useful for testing spacesuit parts.NASA/JPL-Caltech “We want to understand what the risk is to astronauts going into permanently shadowed regions, and gloves and boots are key because they make prolonged contact with cold surfaces and tools,” said Zach Fester, an engineer with the Advanced Suit Team at NASA Johnson and the technical lead for the boot testing.
      Keeping Cool
      Housed in the same building as JPL’s historic 10-Foot Space Simulator, the CITADEL chamber uses compressed helium to get as low as minus 370 F (minus 223 C) — lower than most cryogenic facilities, which largely rely on liquid nitrogen. At 4 feet (1.2 meters) tall and 5 feet (1.5 meters) in diameter, the chamber is big enough for a person to climb inside.
      An engineer collects simulated lunar samples while wearing the Axiom Extravehicular Mobility Unit spacesuit during testing at NASA Johnson in late 2023. Recent testing of existing NASA spacesuit designs in JPL’s CITADEL chamber will ultimately support de-velopment of next-generation suits being built by Axiom Space.Axiom Space More important, it features four load locks, drawer-like chambers through which test materials are inserted into the main chamber while maintaining a chilled vacuum state. The chamber can take several days to reach test conditions, and opening it to insert new test materials starts the process all over again. The load locks allowed engineers to make quick adjustments during boot and glove tests.
      Cryocoolers chill the chamber, and aluminum blocks inside can simulate tools astronauts might grab or the cold lunar surface on which they’d walk. The chamber also features a robotic arm to interact with test materials, plus multiple visible-light and infrared cameras to record operations.
      Testing Extremities
      The gloves tested in the chamber are the sixth version of a glove NASA began using in the 1980s, part of a spacesuit design called the Extravehicular Mobility Unit. Optimized for spacewalks at the International Space Station, the suit is so intricate it’s essentially a personal spacecraft. Testing in CITADEL at minus 352 F (minus 213 C) showed the legacy glove would not meet thermal requirements in the more challenging environment of the lunar South Pole. Results haven’t yet been fully analyzed from boot testing, which used a lunar surface suit prototype called the Exploration Extravehicular Mobility Unit. NASA’s reference design of an advanced suit architecture, this spacesuit features enhanced fit, mobility, and safety.
      In addition to spotting vulnerabilities with existing suits, the CITADEL experiments will help NASA prepare criteria for standardized, repeatable, and inexpensive test methods for the next-generation lunar suit being built by Axiom Space — the Axiom Extravehicular Mobility Unit, which NASA astronauts will wear during the Artemis III mission.
      “This test is looking to identify what the limits are: How long can that glove or boot be in that lunar environment?” said Shane McFarland, technology development lead for the Advanced Suit Team at NASA Johnson. “We want to quantify what our capability gap is for the current hardware so we can give that information to the Artemis suit vendor, and we also want to develop this unique test capability to assess future hardware designs.”
      In the past, astronauts themselves have been part of thermal testing. For gloves, an astronaut inserted a gloved hand into a chilled “glove box,” grabbed a frigid object, and held it until their skin temperature dropped as low as 50 F (10 C). McFarland stressed that such human-in-the-loop testing remains essential to ensuring future spacesuit safety but doesn’t produce the consistent data the team is looking for with the CITADEL testing.
      To obtain objective feedback, the CITADEL testing team used a custom-built manikin hand and foot. A system of fluid loops mimicked the flow of warm blood through the appendages, while dozens of temperature and heat flux sensors provided data from inside gloves and boots.
      “By using CITADEL and modern manikin technology, we can test design iterations faster and at much lower cost than traditional human-in-the-loop testing,” said Morgan Abney, NASA technical fellow for Environmental Control and Life Support, who conceived the glove testing effort. “Now we can really push the envelope on next-generation suit designs and have confidence we understand the risks. We’re one step closer to landing astronauts back on the Moon.”
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      Houston, We Have a Podcast: next-generation spacesuits Why NASA’s Perseverance rover carries spacesuit materials News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-060
      Share
      Details
      Last Updated Apr 24, 2025 Related Terms
      Artemis 3 Earth's Moon Exploration Systems Development Mission Directorate Jet Propulsion Laboratory NASA Engineering & Safety Center Academy Spacesuits xEVA & Human Surface Mobility Explore More
      3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 7 days ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
      Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
      Article 1 week ago 3 min read Michael Ciancone Builds a Lasting Legacy in Human Spaceflight 
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section Science Science Activation GLOBE Mission Earth Supports… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      GLOBE Mission Earth Supports Career Technical Education
      The NASA Science Activation program’s GLOBE Mission EARTH (GME) project is forging powerful connections between career technical education (CTE) programs and real-world science, inspiring students across the United States to pursue careers in Science, Technology, Engineering, and Mathematics (STEM).
      GME is a collaborative effort between NASA scientists, educators, and schools that brings NASA Earth science and the GLOBE Program into classrooms to support hands-on, inquiry-based learning. GLOBE (Global Learning and Observations to Benefit the Environment) is an international science and education program that provides students and the public with the opportunity to participate in data collection and the scientific process, contributing meaningfully to our understanding of the Earth system.
      By connecting students directly to environmental research and NASA data, GME helps make science more relevant, engaging, and applicable to students’ futures. In CTE programs—where project-based and work-based learning are key instructional strategies—GME’s integration of GLOBE protocols offers students the chance to develop not only technical skills, but also essential data literacy and professional competencies like collaboration, critical thinking, and communication. These cross-cutting skills are valuable across a wide range of industries, from agriculture and advanced manufacturing to natural resources and public safety.
      The real-world, hands-on approach of CTE makes it an ideal setting for implementing GLOBE to support STEM learning across industries. At Skyline High School in Oakland, California, for example, GLOBE has been embedded in multiple courses within the school’s Green Energy Pathway, originally launched by GLOBE partner Tracy Ostrom. Over the past decade, nearly 1,000 students have participated in GLOBE activities at Skyline. Many of these students describe their experiences with environmental data collection and interactions with NASA scientists as inspiring and transformative. Similarly, at Toledo Technology Academy, GME is connecting students with NASA science and renewable energy projects—allowing them to study how solar panels impact their local environment and how weather conditions affect wind energy generation.
      To expand awareness of how GLOBE can enhance CTE learning and career preparation, WestEd staff Svetlana Darche and Nico Janik presented at the Educating for Careers Conference on March 3, 2025, in Sacramento, California. This event, sponsored by the California chapter of the Association for Career and Technical Education (ACTE), brought together over 2,600 educators dedicated to equipping students with the tools they need to succeed in an evolving job market. Darche and Janik’s session, titled “Developing STEM Skills While Contributing to Science,” showcased GLOBE’s role in work-based learning and introduced new federal definitions from the Carl D. Perkins Act (Perkins V) that emphasize:
      Interactions with industry professionals A direct link to curriculum and instruction First-hand engagement with real-world tasks in a given career field GLOBE’s approach to scientific data collection aligns perfectly with these criteria. Janik led 40 educators through a hands-on experience using the GLOBE Surface Temperature Protocol, demonstrating how students investigate the Urban Heat Island Effect while learning critical technical and analytical skills. By collecting and analyzing real-world data, students gain firsthand experience with the tools and methods used by scientists, bridging the gap between classroom learning and future career opportunities.
      Through GME’s work with CTE programs, students are not only learning science—they are doing science. These authentic experiences inspire, empower, and prepare students for careers where data literacy, scientific inquiry, and problem-solving are essential. With ongoing collaborations between GLOBE, NASA, and educators nationwide, the next generation of STEM professionals is already taking shape—one real-world investigation at a time.
      GME is supported by NASA under cooperative agreement award number NNX16AC54A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      GreenEnergyPathway presenting the Green Energy Pathway CTE program. Share








      Details
      Last Updated Apr 11, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Earth Science For Kids and Students Opportunities For Educators to Get Involved Explore More
      1 min read Kudos Test Article


      Article


      3 hours ago
      4 min read New York Math Teacher Measures Trees & Grows Scientists with GLOBE


      Article


      24 hours ago
      3 min read NASA Science Supports Data Literacy for K-12 Students


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Students explore the Manufacturing Facility at NASA’s Glenn Research Center in Cleveland during Career Technical Education Day on March 11.Credit: NASA/Jef Janis NASA’s Glenn Research Center in Cleveland welcomed more than 150 students and educators to showcase technical careers, inspire the next generation, and ignite a passion for learning during a Career Technical Education program March 11.
      “Here at Glenn Research Center, we love what we do, and we love to share what we do,” said Dawn Schaible, Glenn’s deputy director, during opening remarks at the event. “I hope you find today educational and inspiring, and let your passion and hard work drive you to places you can’t even imagine. We have space for every profession at NASA.”
      Dawn Schaible, NASA Glenn Research Center’s deputy director, welcomes more than 150 students to Career Technical Education Day on March 11. Students toured the Manufacturing Facility and the Flight Research Building while talking to NASA experts about technical careers within the agency.Credit: NASA/Jef Janis The event, hosted by NASA’s Next Gen STEM Project in collaboration with Glenn’s Office of STEM Engagement (OSTEM), gave students a behind-the-scenes look at the technical careers that make NASA’s missions possible.
      Glenn’s Manufacturing Facility opened its doors to demonstrate how technical careers like machining and fabrication enable NASA to take an idea and turn it into a reality. Students explored Glenn’s metal fabrication, instrumentation, wiring, machining, and 3D printing capabilities while gleaning advice from experts in the field.
      Students also toured Glenn’s Flight Research Building where they spoke with the center’s flight crew, learned how the agency is using the Pilatus PC-12 aircraft to support a variety of aeronautics research missions, and discussed what a career in aviation looks like.

      A student experiences virtual reality during Career Technical Education Day at NASA’s Glenn Research Center in Cleveland on March 11. The Graphics and Visualization Lab spoke with students about how 3D demonstrations help NASA find innovative solutions to real-world challenges.Credit: NASA/Jef Janis “In OSTEM, our role is connecting students, just like you, with real opportunities at NASA,” said Clarence Jones, OSTEM program specialist, while addressing the group. “We want you to be able to see yourselves in these roles and possibly be part of our workforce someday.”
      Next Gen STEM and OSTEM host many events like Career Technical Education Day. The next opportunity, “Spinoffs in Sports,” is scheduled for April 10. Participants will learn about NASA technologies that are being used the sporting world. Registration for this virtual career connection ends April 4. 
      NASA also offers In-Flight STEM Downlinks for students and educators to interact with astronauts aboard the International Space Station during Q&A sessions. The Expedition 74 proposal window is open now through April 29.
      Explore More
      3 min read Finalists Selected in NASA Aeronautics Agriculture-Themed Competition 
      Article 6 days ago 1 min read NASA Glenn Experts Join Law College to Talk Human Spaceflight 
      Article 1 week ago 2 min read NASA Releases its Spinoff 2025 Publication 
      Article 1 week ago View the full article
    • By Space Force
      Defense Secretary Pete Hegseth remarked on the value of the Air Force and Space Force in both deterring and engaging in future military conflicts while speaking at the Department of the Air Force Summit.

      View the full article
    • By NASA
      Rodent Research-28 fluorescein angiogram of the microvascular circulation of the mouse retina.Image courtesy: Oculogenex Inc. Key Takeaways
      A total of 361 publications were collected in FY-24. These publications include peer-reviewed scientific studies or other literature such as books and patents published recently or years prior. More than 80% of the publications collected in FY-24 were from research sponsored by NASA and JAXA. In FY-24, the predominant area of study for publications was Earth and Space science. The results obtained were primarily generated via Derived Results, studies that retrieve open data from online sources to make new discoveries. These Derived publications indicate a 39% return on investment. A total of 4,438 publications have been gathered since the beginning of station, and about 16% of this literature has been published in top-tier journals. The year-over-year growth of top-tier publications has been greater than the growth of regular publications. In 13 years, there was a  22% growth of top-tier publications and a 0.47% growth of regular publications. Almost 80% of top-tier results have been published in the past seven years. Station research continues to surpass national and global standards of citation impact. This year, a simplified hierarchy map showing the nested categories of station disciplines, subdisciplines, and selected keywords is presented to represent the more than 15,000 topic key words generated by the studies. Station research has seen a remarkable growth of international collaboration since its first days of assembly in 1999. Currently, about 40% of the research produced by station is the result of a collaboration between two or more countries. To date, the United States has participated in 23% of international collaborations. Of the nearly 4,000 investigations operated on station since Expedition 0, approximately 59% are identified as completed. From this subset of completed investigations, studies directly conducted on station rather than Derived Results have produced the most scientific results. This pattern differs from analyses conducted with all publication data. Introduction
      The International Space Station is a state-of-the art laboratory in low Earth orbit. Since the year 2000, distinguished researchers from a myriad of disciplines around the world have been sending equipment and investigations to station to learn how space-related variables affect the human body, plant and microbial life, physical processes, equipment function, and more. Sophisticated remote sensing techniques and telescopes attached to station also observe the Earth and the universe to enhance our understanding of weather patterns, biomass changes, and cosmic events.
      Investigations can be operated remotely from Earth with ground control support, directly on station with the help of crew members, or autonomously (without human assistance). The most recent science conducted on station has engaged private astronauts to advance the research endeavors of the commercial sector. The improvement of these science operations (i.e., how data is collected and returned) has led to more reliable scientific results. Additionally, extensive domestic and international collaboration bridging academic institutions, corporations, and funding agencies has produced high quality and impactful research that inspires new generations of students, researchers, and organizations looking to solve problems or innovate in emerging fields.
      The studies highlighted in this report are only a small, representative sample of the research conducted on station in the past 12 months. Many more groundbreaking findings were reported in fiscal year 2024 (FY- 24), including:
      Plant adaptation through the adjustment of regulatory proteins, which can lead to sustainable food production on the Moon and Mars (BRIC-LED-001). A connection between downregulated mitochondrial gene pathways and neurotransmitter signaling dysfunction that could assist the development of new pharmaceutical or nutritional therapies to prevent strength loss in neuromuscular disorders. (Microbial Observatory-1). The precise measurement of hydrogen isotopes to provide a better assessment of dark matter (AMS-02). The adaptation of a permanent flow cytometer in space that enables the examination of blood counts, hormones, enzymes, nucleic acids, proteins, and biomarkers to assess crew health in real time (rHEALTH). The behavior of oil-in-water drops in microgravity (i.e., oil drops grow over time, but drop displacement decreases). Understanding the behavior of oils, dyes, and detergents can lead to a safer environment and sustainability of emulsion technologies in the food, pharmaceutical, paint, and lubrication industries (FSL Soft Matter Dynamics-PASTA). Fundamental and applied research conducted on station improves the state of scientific understanding. Whether it is through the examination of microgravity and radiation effects, or through the testing of countermeasures, new materials, and computing algorithms; the hard work of integrating flight operations with scientific objectives is carried out to protect our planet, improve our health, and learn more about our place in the universe.
      The following pages aim to demonstrate how station is revolutionizing science through cooperation, curiosity, and ingenuity. Projects that may have begun as simple ideas are now shaping the way we think about and operate in space to advance our goal of going to the Moon and beyond.
      NASA astronaut and Expedition 70 Flight Engineer Jasmin Moghbeli poses in front of the Kibo laboratory module’s Advanced Plant Habitat housing tomato plants for an experiment investigating how the plant immune system adapts to spaceflight and how spaceflight affects plant production. NASA ID: iss070e073612.Credits: NASA Bibliometric Analyses: Measuring Space Station Impacts
      Literature associated with space station research results (e.g., scientific journal articles, books, patents) is collected, curated, and linked to investigations. The content from these publications is classified based on how the results are obtained. The current classifications are:
      Flight Preparation Results – publications about the development work performed for an investigation or facility prior to operation on space station. Station Results – publications that provide information about the performance and results of an investigation or facility as a direct implementation on station or on a vehicle to space station. Derived Results – publications that use open data from an investigation that operated on station. Access to raw data for new researchers expands global knowledge and scientific benefits. Related – publications that indirectly lead to the development of an investigation or facility. To date, over 2,200 publications have been identified as Related. This count of Related publications is not included in the analyses presented in this report.
      Projects taking place on station (facilities or investigations) are assigned to one of six science disciplines:
      Biology and Biotechnology: Includes plant, animal, cellular biology, habitats, macromolecular crystal growth, and microbiology. Earth and Space Science: Includes astrophysics, remote sensing, near-Earth space environment, astrobiology, and heliophysics. Educational and Cultural Activities: Includes student-developed investigations and competitions. Human Research: Includes crew healthcare systems, all human-body systems, nutrition, sleep, and exercise. Physical Science: Includes combustion, materials, fluid, and fundamental physics. Technology Development and Demonstration: Includes air, water, surface, and radiation monitoring, robotics, small satellites and control technologies, and spacecraft materials. Facilities consist of the infrastructure and equipment on station that enable the research to be conducted (e.g., workstation “racks” containing power, data and thermal control, furnaces, crystallization units, animal and plant habitats). Investigations are research projects with one or multiple science objectives. Investigations may use a facility to execute the experiments. A publicly accessible database of space station investigations, facilities, and publications can be found in the Space Station Research Explorer (SSRE) website. Through bibliometric analyses, the examination of publications and citations in different categories, we learn about research productivity, quality, collaboration, and impact. These measurements allow our organization to identify trends in research growth to better plan and support new scientific endeavors. The analyses included in this report serve to answer questions related to fiscal year data and total publication data to promote research accountability and integrity and ensure benefits to humanity.

      Station research produced in FY-2024
      Between Oct. 1, 2023, and Sept. 30, 2024, we identified a total of 361 publications associated with station research. Of these 361 publications, 52 were published in Biology and Biotechnology, 176 in Earth and Space, 5 in Educational and Cultural Activities, 40 in Human Research, 56 in Physical Science, and 32 in Technology Development and Demonstration. This publication count broken out by research discipline and space agency is shown in Figure 1A. Of the 361 publications, 41 were classified as Flight Preparation Results, 178 as Station Results, and 140 as Derived Results. Because Derived Results are new scientific studies generated from shared data, derived science is an additional return on the investment entrusted to station. In FY-24, this return on investment was 39%; a 12% increase from FY-23. Figure 1B shows this publication data broken out by research discipline and publication type.
      Figure 1A. A total of 361 publications were collected in FY-24. Over 80% of the publications reported results in Earth and Space, primarily from investigations associated with NASA and JAXA research. Figure 1B, A total of 361 publications were collected in FY-24. Most publications in Earth and Space came from Derived Results associated with NASA and JAXA research. These Derived Results demonstrate a return on investment of 39%, a 12% increase from FY-23. Overall growth, quality, impact, and diversity of station research
      Growth: A total of 4,438 publications have been collected since station began operations with 176 publications (4%) from work related to facilities on station. In Figure 2A, we show the growth of both regular and top-tier science over the years. Top-tier publications are studies published in scientific journals ranked in the top 100 according to ClarivateTM (Web of ScienceTM)1, a global database that compiles readership and citation standards to calculate a journal’s Eigenfactor Score2 and ranking. Regular publications include literature published in sources that may be specific to microgravity research but are not ranked.
      Our data shows that over a 13-year period from 2011 to 2023, regular publications grew 0.47% per year and top-tier publications grew 22% per year. Some of the subdisciplines that have experienced most growth from station research are astrophysics (707 publications), Earth remote sensing (266 publications), fluid physics (245 publications), and microbiology (214 publications).
      Quality: About 16% of station results have been published in top-tier journals. However, in Figure 2B we zoom in to examine the growth of top-tier publications given their station science discipline, showing that almost 80% of top-tier research has been published in the past seven years. Currently, a total of 696 articles have been published in top-tier journals and about 53% of this total are Derived Results from Earth and Space science investigations.
      Figure 2A. Growth of regular and top-tier research publications over time. About 16% of station results have been published in top-tier journals. Inset shows the growth of microgravity- and non-microgravity-specific sources used in regular publications. Figure 2B. Growth of top-tier research publications by station research discipline (n = 696). There has been a significant
      increase of top-tier articles published since 2018, with a little over 50% emerging from Derived Results in Earth and Space
      science. Table inset shows the top-tier journals with most station research published. Impact: Previous analyses have demonstrated that the citation impact of station research has superseded national and global standards since 2011 (See Annual Highlights of Results FY-2023). This pattern continues today.
      Diversity: Station science covers six major science disciplines, 73 subdisciplines, and thousands of topic keywords within each subdiscipline. A precise visualization of such abundant diversity would be overwhelming and impenetrable. However, plotting a few topic keywords within each sub-discipline succinctly shows the breadth of science station has to offer (Figure 3). For a better appreciation of station’s diversity, see the interactive hierarchy diagram online. Note that some topics, such as radiation, are studied from multiple perspectives (e.g., radiation measurement through physical science, radiation effects through human research, and shielding through technology development). Topic keywords were obtained using ClarivateTM (Web of ScienceTM).1
      Station research collaboration
      Previous analyses have shown the growth of collaboration between countries throughout the years based on co-authorship (See Annual Highlights of Results FY-2023). In a new analysis conducted with country data obtained through Dimensions.ai3 (n = 3,309 publications), we calculated that about 40% of the publications produced from station research are collaborations between several countries, and about 60% are intercollegiate collaborations within individual countries. As seen in the space agency networks in Figure 4, the United States participates in approximately 23% of the collaborations with other countries, making it the most collaborative country.
      Figure 4: Country collaboration in station research based on publication co-authorship. Networks include up to five countries collaborating in an investigation. Nodes and links from countries that published their research independently are not included. From research ideas to research findings
      Nearly 4,000 investigations have operated since Expedition 0; with a subset of 2,352 investigations (approximately 59%) marked as complete. These completed investigations have concluded their science objectives and reported findings. In Figure 5, we show the citation output from publications exclusively tied to completed investigations. In this Sankey diagram, Times Cited corresponds to the count of publications with at least one citation in each publication type (Station Results, Flight Preparation Results, and Derived Results). This citation count adequately parallels the total number of citations per publication and allows the visualization of a comprehensible chart. This analysis demonstrates that most completed investigations have reported results directly from studies conducted on station, followed by studies conducted in preparation to go to space, and finally by studies derived from open science available online. Likewise, results obtained straight from station receive more citations (e.g, over 46,000) than Flight Preparation (3,636 citations) or Derived results (936 citations). This pattern differs from analyses including all publication data in Figures 1 and 2.
      Linking Space Station Benefits
      Space station research results lead to benefits for human exploration of space, benefits to humanity, and the advancement of scientific discovery. This year’s Annual Highlights of Results from the International Space Station includes descriptions of just a few of the results that were published from across the space station partnership during the past year.
      EXPLORATION: Space station investigation results have yielded updated insights into how to live and work more effectively in space by addressing such topics as understanding radiation effects on crew health, combating bone and muscle loss, improving designs of systems that handle fluids in microgravity, and determining how to maintain environmental control efficiently. DISCOVERY: Results from the space station provide new contributions to the body of scientific knowledge in the physical sciences, life sciences, and Earth and space sciences to advance scientific discoveries in multi-disciplinary ways. BENEFITS FOR HUMANITY: Space station science results have Earth-based applications, including understanding our climate, contributing to the treatment of disease, improving existing materials, and inspiring the future generation of scientists, clinicians, technologists, engineers, mathematicians, artists, and explorers. References
      1Journal ranking and Figure 5 data were derived from ClarivateTM (Web of ScienceTM). © Clarivate 2024. All rights reserved.
      2West JD, Bergstrom TC, Bergstrom CT. The Eigenfactor MetricsTM: A Network approach to assessing scholarly journals. College and Research Libraries. 2010;71(3). DOI: 10.5860/0710236.
      3Digital Science. (2018-) Dimensions [Software] available from https://app.dimensions.ai. Accessed on October 10, 2024, under license agreement.

      View the full article
  • Check out these Videos

×
×
  • Create New...