Jump to content

NASA Supports GoAERO University Awardees for Emergency Aircraft Prototyping


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist illustration of the Aircraft Harmony, one of the GoAEROs prize competition winners..
Artist’s concept of an emergency response flyer from a team at Texas A&M University and Oklahoma State University, one of 14 university teams that received NASA-supported GoAERO awards in 2025.
Texas A&M University and Oklahoma State University

With support from NASA, the international GoAERO Prize competition recently announced funding for 14 U.S. university teams to build innovative new compact emergency response aircraft. 

The teams will develop prototype versions of Emergency Response Flyers, aircraft intended to perform rescue and response missions after disasters and in crisis situations. The flyers must be designed to deliver a first responder, evacuate victims, provide emergency medical supplies, and aid in humanitarian efforts. Teams will bring their test aircraft to a fly-off expected in 2027. 

These awards will provide students with an opportunity that might have otherwise been difficult – a chance to design and build potentially lifesaving aircraft.

koushik datta

koushik datta

NASA Project Manager

“These awards will provide students with an opportunity that might have otherwise been difficult – a chance to design and build potentially lifesaving aircraft,” said Koushik Datta, University Innovation Project manager in NASA’s Aeronautics Research Mission Directorate at NASA Headquarters in Washington. “At NASA, we’re looking forward to seeing how these young innovators can contribute to our mission to advance futuristic aviation technologies that can benefit first responders and the public.” 

With support from NASA’s University Innovation Project, GoAERO named 14 awardee teams at the following universities: 

  • Auburn University, in Leeds, Alabama  
  • California Polytechnic University, in Pomona  
  • Carnegie Mellon University, in Pittsburgh  
  • Embry-Riddle Aeronautical University, in Daytona Beach, Florida 
  • Georgia Institute of Technology, in Atlanta 
  • North Carolina Agricultural & Technical State University, in Greensboro  
  • North Carolina State University, in Raleigh 
  • The Ohio State University, in Columbus  
  • Penn State University, in State College  
  • Purdue University, in West Lafayette, Indiana  
  • Saint Louis University  
  • Texas A&M University, in College Station, and Oklahoma State University, in Stillwater  
  • University of Texas, Austin  
  • Virginia Tech, in Blacksburg 

Student teams can utilize the funds to purchase parts, materials, batteries, and other components for building their aircrafts. 

When naming the university awardees, GoAERO – in partnership with Boeing, RTX, and Honeywell – also announced 11 winners of Stage 1 of its competition. These include teams from the private sector and universities. These awardees were selected to build full- or smaller-scale flyers for evaluation. Eight entries will be selected for the next round of Stage 2 awards. The GoAERO Prize is still accepting new teams.  While prizes are awarded at Stage 1 and Stage 2, teams do not need to win prizes to continue on to the next stage or compete in the final fly-off.  

In addition to the University Innovation Project support for the university teams, NASA has partnered with GoAERO through a non-funded Space Act Agreement to provide U.S. teams with mentorship, educational opportunities, and access to specialized software tools. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The SpaceX Dragon spacecraft carrying the Axiom Mission 4 crew launches atop the Falcon 9 rocket from NASA’s Kennedy Space Center to the International Space Station.Credit: NASA As part of NASA’s efforts to expand access to space, four private astronauts are in orbit following the successful launch of the fourth all private astronaut mission to the International Space Station.
      A SpaceX Dragon spacecraft lifted off at 2:31 a.m. EDT Wednesday from Launch Complex 39A at NASA’s Kennedy Space Center in Florida, carrying Axiom Mission 4 crew members Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space as commander, ISRO (Indian Space Research Organisation) astronaut and pilot Shubhanshu Shukla, and mission specialists ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary.
      “Congratulations to Axiom Space and SpaceX on a successful launch,” said NASA acting Administrator Janet Petro. “Under President Donald Trump’s leadership, America has expanded international participation and commercial capabilities in low Earth orbit. U.S. industry is enabling astronauts from India, Poland, and Hungary to return to space for the first time in over forty years. It’s a powerful example of American leadership bringing nations together in pursuit of science, discovery, and opportunity.”
      A collaboration between NASA and ISRO allowed Axiom Mission 4 to deliver on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      This mission serves as an example of the success derived from collaboration between NASA’s international partners and American commercial space companies.
      Live coverage of the spacecraft’s arrival will begin at 5 a.m., Thursday, June 26, on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      The spacecraft is scheduled to autonomously dock at approximately 7 a.m. to the space-facing port of the space station’s Harmony module.
      Once aboard the station, Expedition 73 crew members, including NASA astronauts, Nicole Ayers, Anne McClain, and Jonny Kim, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonauts Kirill Peskov, Sergey Ryzhikov, and Alexey Zubritsky will welcome the astronauts.
      The crew is scheduled to remain at the space station, conducting microgravity research, educational outreach, and commercial activities for about two weeks before a return to Earth and splashdown off the coast of California.
      The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, empowers U.S. industry, and enables the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jun 25, 2025 LocationNASA Headquarters Related Terms
      Commercial Crew Commercial Space Humans in Space International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      The SpaceX Dragon spacecraft carrying the Axiom Mission 3 crew is pictured approaching the International Space Station on Jan. 20, 2024.Credit: NASA NASA, Axiom Space, and SpaceX are targeting 2:31 a.m. EDT, Wednesday, June 25, for launch of the fourth private astronaut mission to the International Space Station, Axiom Mission 4.
      The mission will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The crew will travel to the orbiting laboratory on a new SpaceX Dragon spacecraft after launching on the company’s Falcon 9 rocket. The targeted docking time is approximately 7 a.m. Thursday, June 26.
      This launch opportunity comes after NASA and Roscosmos officials discussed the status of the recent repair work in the transfer tunnel at the aft (back) most segment of the orbital laboratory’s Zvezda service module. Based on the evaluations, NASA and Roscosmos agreed to further lower the pressure in the transfer tunnel to 100 millimeters of mercury, and teams will continue to evaluate going forward. Safety remains a top priority for NASA and Roscosmos.
      “NASA and Roscosmos have a long history of cooperation and collaboration on the International Space Station. This professional working relationship has allowed the agencies to arrive at a shared technical approach and now Axiom Mission 4 launch and docking will proceed,” said acting NASA Administrator Janet Petro. “We look forward to the launch with Axiom Space and SpaceX for this commercial international mission.”
      For this mission, NASA is responsible for integrated operations, which begins during the spacecraft’s approach to the space station, continues during the crew’s stay aboard the orbiting laboratory conducting science, education, and commercial activities, and concludes once the spacecraft departs the station.
      Live coverage of launch and arrival activities will stream on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary.
      Once docked, the private astronauts plan to spend about two weeks aboard the orbiting laboratory, conducting a mission comprised of science, outreach, and commercial activities.
      As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Donald Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit STEM (science, technology, engineering, and mathematics) demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carries the first astronauts from Poland and Hungary to stay aboard the International Space Station.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, June 25
      12:30 a.m. – Axiom Space and SpaceX launch coverage begins.
      1:40 a.m. – NASA joins the launch coverage on NASA+.
      2:31 a.m. – Launch
      NASA will end coverage following orbital insertion, which is approximately 15 minutes after launch. As it is a commercial launch, NASA will not provide a clean launch feed on its channels.
      Thursday, June 26
      5 a.m. – Arrival coverage begins on NASA+, Axiom Space, and SpaceX channels.
      7 a.m. – Targeted docking to the space-facing port of the station’s Harmony module.
      Arrival coverage will continue through hatch opening and welcome remarks.
      All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.
      The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jun 24, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space Commercial Space Programs International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      NASA astronaut Zena Cardman inspects her spacesuit’s wrist mirror at the NASA Johnson Space Center photo studio on March 22, 2024.NASA/Josh Valcarcel NASA astronaut Zena Cardman [link to her bio] inspects her spacesuit’s wrist mirror in this portrait taken at NASA’s Johnson Space Center in Houston on March 22, 2024. Cardman will launch to the International Space Station as part of NASA’s SpaceX Crew-11 mission. This will be her first spaceflight.
      Cardman was selected by NASA as a member of the 2017 “Turtles” Astronaut Class. The Virginia native holds a Bachelor’s of Science in Biology and a Master’s of Science in Marine Sciences from the University of North Carolina, Chapel Hill. Her research focused primarily on geobiology and geochemical cycling in subsurface environments, from caves to deep sea sediments. Cardman’s experience includes multiple Antarctic expeditions. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning.
      This photo was one of the winners of NASA’s 2024 Photos of the Year.
      View the full article
    • By NASA
      Ozone high in the stratosphere protects us from the Sun’s ultraviolet light. But ozone near the ground is a pollutant that harms people and plants. The San Joaquin Valley has some of the most polluted air in the country, and NASA scientists with the new Ozone Where We Live (OWWL) project are working to measure ozone and other pollutants there. They need your help!  
      Do you live or work in Bakersfield, CA? Sign up to host an ozone sensor! It’s like a big lunch box that you place in your yard, but it’s not packed with tuna and crackers. It’s filled with sensors that measure temperature and humidity and sniff out dangerous gases like methane, carbon monoxide, carbon dioxide, and of course, ozone. 
      Can you fly a plane? Going to the San Joaquin Valley? Sign up to take an ozone sensor on your next flight! You can help measure ozone levels in layers of the atmosphere that are hard for satellites to investigate. Scientists will combine the data you take with data from NASA’s TEMPO satellite to improve air quality models and measurements within the region. Find out more here or email: Emma.l.yates@nasa.gov
      Join the Ozone Where We Live (OWWL) project and help NASA scientists protect the people of the San Joaquin Valley! Credit: Emma Yates Share








      Details
      Last Updated Jun 24, 2025 Related Terms
      Citizen Science Earth Science Division Tropospheric Emissions: Monitoring of Pollution (TEMPO) Explore More
      4 min read c-FIRST Team Sets Sights on Future Fire-observing Satellite Constellations


      Article


      3 weeks ago
      2 min read Summer Students Scan the Radio Skies with SunRISE


      Article


      4 weeks ago
      2 min read Space Cloud Watch Needs Your Photos of Night-Shining Clouds 


      Article


      1 month ago
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Some career changes involve small shifts. But for one NASA engineering intern, the leap was much bigger –moving from under the hood of a car to helping air taxis take to the skies.
      Saré Culbertson spent more than a decade in the auto industry and had been working as a service manager in busy auto repair shops. Today, she supports NASA’s Air Mobility Pathfinders project as a flight operations engineer intern at NASA’s Armstrong Flight Research Center in Edwards, California, through NASA’s Pathways program.
      “NASA has helped me see opportunities I didn’t even know existed
      Saré Culbertson
      NASA Intern
      “NASA has helped me see opportunities I didn’t even know existed,” she said. “I realized that being good at something isn’t enough – you have to be passionate about it too.”
      With a strong foundation in mechanical engineering – earning a bachelor’s degree from California State University, Long Beach, Antelope Valley Engineering Program – she graduated magna cum laude and delivered her class’s commencement speech. Culbertson also earned two associate’s degrees, one in engineering and one in fine arts.
      NASA Pathways intern Saré Culbertson, right, works with NASA operations engineer Jack Hayes at NASA’s Armstrong Flight Research Center in Edwards, California, on Nov. 7, 2024. They are verifying GPS and global navigation satellite system coordinates using Emlid Reach RS2+ receiver equipment, which supports surveying, mapping, and navigation in preparation for future air taxi test flight research.NASA/Genaro Vavuris Before making the switch to aeronautics, she worked at car dealerships and independent car repair facilities while in college. She also led quality control efforts to help a manufacturer meet international standards for quality.
      “I never thought land surveying would have anything to do with flying. But it’s a key part of supporting our research with GPS and navigation verification,” Culbertson said. “GPS measures exact positions by analyzing how long signals take to travel from satellites to ground receivers. In aviation testing, it helps improve safety by reducing signal errors and ensuring location data of the aircraft is accurate and reliable.”
      A musician since childhood, Culbertson has also performed in 21 states, playing everything from tuba to trumpet, and even appeared on HBO’s “Silicon Valley” with her tuba. She’s played in ska, punk, and reggae bands and now performs baritone in the Southern Sierra Pops Orchestra.
      Saré Culbertson, NASA Pathways intern at NASA’s Armstrong Flight Research Center in Edwards, California, adjusts the Emlid Reach RS2+ receiver equipment that connects with GPS and global navigation satellite systems on Nov. 7, 2024, in preparation for future air taxi test flight research.NASA/Genaro Vavuris The NASA Pathways internship, she says, changed everything. Culbertson was recently accepted into the Master of Science in Flight Test Engineering program at the National Test Pilot School, where she will be specializing in fixed wing performance and flying qualities.
      Her advice for anyone starting out?
      “Listen more than you talk,” she said. “Don’t get so focused on the next promotion that you forget to be great at the job you have now.”
      During her internship, Culbertson is making meaningful contributions toward NASA’s Urban Air Mobility research. She collects location data for test landing sites as part of the first evaluation of an experimental commercial electric vertical takeoff landing aircraft, a significant milestone in the development of next generation aviation technologies. From fixing cars to helping air taxis become a reality, Saré Culbertson is proof that when passion meets persistence, the sky isn’t the limit – it’s just the beginning.
      Share
      Details
      Last Updated Jun 23, 2025 EditorDede DiniusContactLaura Mitchelllaura.a.mitchell@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Air Mobility Pathfinders project Careers Internships What We Do Explore More
      3 min read NASA Air Taxi Passenger Comfort Studies Move Forward
      Article 3 days ago 2 min read NASA Aircraft to Make Low-Altitude Flights in Mid-Atlantic, California
      Article 3 days ago 4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...