Members Can Post Anonymously On This Site
Melissa Gates: Keeping Goddard Running
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
Sols 4549-4552: Keeping Busy Over the Long Weekend
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 23, 2025 — Sol 4548, or Martian day 4,548 of the Mars Science Laboratory mission — at 07:17:19 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University
Earth planning date: Friday, May 23, 2025
In Wednesday’s mission update, Alex mentioned that this past Monday’s plan included a “marathon” drive of 45 meters (148 feet). Today, we found ourselves almost 70 meters (230 feet) from where we were on Wednesday. This was our longest drive since the truly enormous 97-meter (318-foot) drive back on sol 3744.
Today’s plan looks a little different from our usual weekend plans. Because of the U.S. Memorial Day holiday on Monday, the team will next assemble on Tuesday, so an extra sol had to be appended to the weekend plan. This extra sol is mostly being used for our next drive (about 42 meters or 138 feet), which means that all of the science that we have planned today can be done “targeted,” i.e., we know exactly where the rover is. As a result, we can use the instruments on our arm to poke at specific targets close to the rover, rather than filling our science time exclusively with remote sensing activities of farther-away features.
The rover’s power needs are continuing to dominate planning. Although we passed aphelion (the farthest distance Mars is from the Sun) a bit over a month ago and so are now getting closer to the Sun, we’re just about a week away from winter solstice in the southern hemisphere. This is the time of year when Gale Crater receives the least amount of light from the Sun, leading to particularly cold temperatures even during the day, and thus more power being needed to keep the rover and its instruments warm. On the bright side, being at the coldest time of the year means that we have only warmer sols to look forward to!
Given the need to keep strictly to our allotted power budget, everyone did a phenomenal job finding optimizations to ensure that we could fit as much science into this plan as possible. All together, we have over four hours of our usual targeted and remote sensing activities, as well as over 12 hours of overnight APXS integrations.
Mastcam is spending much of its time today looking off in the distance, particularly focusing on the potential boxwork structures that we’re driving towards. These structures get two dedicated mosaics, totaling 42 images between the two of them. Mastcam will also observe “Mishe Mokwa” (a small butte about 15 meters, or 49 feet, to our south) and some bedrock troughs in our workspace, and will take two tau observations to characterize the amount of dust in the atmosphere.
ChemCam has just one solo imaging-only observation in this plan: an RMI mosaic of Texoli butte off to our east. ChemCam will be collaborating with APXS to take some passive spectral observations (i.e., no LIBS) to measure the composition of the atmosphere. Mastcam and ChemCam will also be working together on observations of LIBS activities. This plan includes an extravagant three LIBS, on “Orocopia Mountains,” “Dripping Springs,” and “Mountain Center.” Both Mastcam and ChemCam also have a set of “dark” observations intended to characterize the performance of the instruments with no light on their sensors, something that’s very important for properly calibrating their measurements.
Our single set of arm activities includes APXS, DRT, and MAHLI activities on “Camino Del Mar” and “Mount Baden-Powell,” both of which are bedrock targets in our workspace.
Of course, I can’t forget to mention the collection of Navcam observations that we have in this plan to monitor the environment. These include a 360-degree survey looking for dust devils, two line-of-sight activities to measure the amount of dust in the air within Gale, and three cloud movies. As always, we’ve also got a typical collection of REMS, RAD, and DAN activities throughout.
Share
Details
Last Updated May 27, 2025 Related Terms
Blogs Explore More
2 min read Sols 4547-4548: Taking in the View After a Long Drive
Article
5 days ago
2 min read Sol 4546: Martian Jenga
Article
5 days ago
5 min read Sols 4543-4545: Leaving the Ridge for the Ridges
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Credit: NASA NASA has selected ARES Technical Services of McLean, Virginia, to provide safety and mission assurance services at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, and Wallops Flight Facility in Virginia.
The Safety and Mission Assurance Services III contract is a cost-plus-fixed-fee contract with an estimated total value of $226 million. The contract will have a five-year effective ordering period starting on June 1, 2025, with an optional six-month extension period.
Under the contract, the vendor will provide support to the agency’s Safety and Mission Assurance Directorate at NASA Goddard. This includes performing independent surveillance, audits, reviews, and assessments of design, development, test, and mission operations activities on site at NASA and supplier facilities.
For information about NASA and other agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Jacob Richmond
Goddard Space Flight Center, Maryland
301-286-6255
jacob.a.richmond@nasa.gov
Share
Details
Last Updated Apr 07, 2025 LocationNASA Headquarters Related Terms
Goddard Space Flight Center Wallops Flight Facility View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Media are invited to meet leaders in the space community during the 62nd annual Goddard Space Science Symposium, taking place from Wednesday, March 19, to Friday, March 21, at Martin’s Crosswinds in Greenbelt, Maryland. The symposium will also be streamed online.
Hosted by the American Astronautical Society (AAS) in conjunction with NASA’s Goddard Space Flight Center in Greenbelt, the symposium examines the current state and future of space science and space exploration at large by convening leading minds across NASA, other government agencies, policy, academia, and industry – collectively navigating a path forward by identifying the opportunities and challenges ahead.
This year’s theme, “Pathways and Partnerships for U.S. Leadership in Earth and Space Science,” highlights the evolving collaborative landscape between the public and private sectors, as well as how it is helping the United States remain and grow as a leading space power.
“Earth and space science are complex by nature, with a growing list of public and private enterprises carving out their space,” said Christa Peters-Lidard, co-chair of the symposium planning committee and Goddard’s director of sciences and exploration. “It’s an exciting time as we work to determine the future trajectory of space exploration in this new era, and the Goddard Space Science Symposium is an instrumental tool for gathering the insights of leading experts across a broad spectrum.”
AAS President Ron Birk and Goddard Deputy Center Director Cynthia Simmons will deliver the symposium’s opening remarks on March 19, followed by panels on enabling science and exploration from the Moon to Mars and navigating space science and exploration policy. Greg Autry, associate provost for space commercialization and strategy at the University of Central Florida, will deliver the keynote address. The first day will conclude with an industry night reception.
The second day of the symposium on Thursday, March 20, will feature panels on enhancing U.S. economic leadership through science, the Habitable Worlds Observatory, and the confluence of public science and the private sector. Gillian Bussey, deputy chief science officer for the U.S. Space Force, will serve as the luncheon speaker.
Panels on the third and final day, March 21, will discuss integrating multi-sector data to advance Earth and space science, the Heliophysics Decadal Survey, and the space weather enterprise. Mark Clampin, acting deputy associate administrator for the NASA Science Mission Directorate, will provide the luncheon address.
Media interested in arranging interviews with NASA speakers should contact Jacob Richmond, Goddard acting news chief.
For more information on the Goddard Space Science Symposium and the updated program, or to register as a media representative, visit https://astronautical.org/events/goddard.
For more information on NASA’s Goddard Space Flight Center, visit https://www.nasa.gov/goddard.
Media Contact:
Jacob Richmond
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Mar 18, 2025 EditorJamie AdkinsLocationNASA Goddard Space Flight Center Related Terms
Goddard Space Flight Center View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
Sols 4452-4453: Keeping Warm and Keeping Busy
NASA’s Mars rover Curiosity acquired this image of the science targets before it, including “Catalina Island,” the flat rock at image center, using its Left Navigation Camera. The rover captured the image on sol 4450 — or Martian day 4,450 of the Mars Science Laboratory mission — on Feb. 11, 2025, at 13:11:14 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Feb. 12, 2025
I woke up this morning to my weather app telling me it felt like minus 15° C (5°F) outside. On days like this, it can take me a little longer to get myself up and out into the world. Curiosity has a similar problem — as we head toward winter and it gets colder and colder in Gale Crater, Curiosity has to spend more time warming up to do things like driving and all our good science. I’ve also been watching a couple winter storms that are expected in the next few days here in Toronto. Luckily, Curiosity doesn’t have to deal with snowstorms, and our drive in the last plan went ahead as planned and put us in a good position to go ahead with contact science today, a relief after having to forego it on Monday.
The contact science location that the geology team chose is called “Catalina Island,” the flat rock you can see in almost the center of the image above. As you can likely also see above, there’s a whole jumble of rocks in that image, and Mastcam and ChemCam have picked out a couple others to take a look at. These are “Point Dume,” which will be the target of ChemCam’s laser spectrometer, and “Whittier Narrows,” on which Mastcam will image some linear features. Mastcam and ChemCam are also turning their gazes further afield for Mastcam targets “Cleghorn Ridge,” “Cuyamaca Peak,” “Kratka Ridge,” and two long-distance ChemCam mosaics of the top of the Wilkerson butte and a spot a little further down known as “Pothole Trail.”
Much like I’m keeping an eye out the window on the changing weather here, Curiosity is also continuing to keep an eye on the environment in Gale Crater. Even though it’s not the dusty season, we continue to monitor the dust around us and in the atmosphere with a dust-devil survey and a tau. But we’re especially interested in what the clouds are up to right now, which we’re checking in on with our normal zenith and suprahorizon movies, and our cloud-season-only Phase Function Sky Survey. This is a series of movies covering the whole sky that we can use to determine how sunlight interacts with the individual water-ice crystals in the clouds.
Written by Alex Innanen, Atmospheric Scientist at York University
Share
Details
Last Updated Feb 14, 2025 Related Terms
Blogs Explore More
2 min read Sols 4450-4451: Making the Most of a Monday
Article
2 days ago
3 min read Sols 4447–4449: Looking Back at the Marker Band Valley
Article
3 days ago
4 min read Sols 4445–4446: Cloudy Days are Here
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Ambiguity.
That’s the word that comes to mind when documentary photographers start each day at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
PACE mission photographer Denny Henry and lead documentary photographer Desiree Stover pose for selfies in the clean room.Credits: NASA “You walk in and think one thing is happening,” said OCI’s lead documentary photographer Desiree Stover. “But in an instant things change – maybe goes wrong –- and you need to be ready to capture it.”
From build to testing to launch, one figure is always present in the background capturing the story of each Goddard mission – the documentary photographer.
In honor of #WorldPhotoDay, follow along as two of our documentarians share what it’s like to capture the story of Goddard’s latest mission build PACE.
PACE or Plankton, Aerosol, Cloud, ocean Ecosystem, is set to launch in early 2024. Its goal is to see ocean and atmosphere features in unparalleled detail. By measuring the intensity of the color that reflects from Earth’s ocean surface, PACE will capture fine details about tiny plant-like organisms and algae that live in the ocean, called phytoplankton, that are the basis of the marine food web and generate half of Earth’s oxygen.
Crafting the Story
For Stover and her partner Denny Henry, PACE’s lead mission photographer, the story starts with the smallest details.
“I think one of the first things I photographed was the outside of a circuit port box. It was literally an empty metal box,” said Henry, who started photographing PACE in 2020, right before the pandemic. “It might be small, but it’s part of a system that’s going to do big things.”
Mark Walter, David Kim, Melyane Ortiz-acosta, and Ariel Obaldo discuss plans for testing the PACE flight Solar Array Panels.Credits: NASA’s Goddard Space Flight Center/Denny Henry A typical day for these photographers usually starts with a morning meeting, assignments and getting ready. By the end of the day, the original plan has likely been changed, multiple times.
“Some days we might shoot eight photos, other days it might be hundreds or more,” Stover said.
PACE, or Plankton, Aerosol, Cloud, ocean Ecosystem, is set to launch in early 2024. Its goal is to see ocean and atmosphere features in unparalleled detail.Credits: NASA Images captured during shoots are used for a variety of things, especially technical components of the mission. This includes documenting builds, spotting mistakes and testing.
Stover got her start at Goddard by photographing NASA’s James Webb Space Telescope before switching to capturing imagery of Goddard’s small instruments, including PACE’s Ocean Color Instrument, or OCI. This advanced sensor will enable continuous measurement of light throughout the ultraviolet to shortwave infrared spectrum to better understand Earth’s ocean and atmosphere.
She says she’s still in awe that her teammates trust her “eye.”
“One of the most fascinating things about working here is that we have a specific job,” she said. “And even though engineers can pick up a camera and take photos, they don’t. They know we’re the experts at it. They trust our eyes to tell and capture the story.”
Henry said one of the most memorable days he’s documented so far was watching the PACE team integrate the SPEXone instrument into the spacecraft.
“All the partners were there as I photographed. It was a big deal,” he said. “I captured every bolt all the way to the mounting. It’s important to get these details. Six months from now someone who wasn’t there might want to see what was done in what order.”
Henry said that capturing images is only part of the job. For every hour of shooting, there’s also an hour spent processing and working with partners to ensure things were documented correctly.
Playing Detective
While telling the story is important, Stover says that part of the job is speaking up, especially when you notice something wrong.
During one assignment documenting vibration testing, Stover noticed that OCI’s Earth shade looked different.
“We took the bagging off and could see tape peeling off the radiator panels, possibly loose wires in certain places,” she said. “When I saw this, I thought back to what it was like when we shot this the first time.”
Physical Science Technician Kristen Washington performs a contamination inspection of the OCI Flight Fold Flat Mirror optic.Credits: Desiree Stover, NASA Goddard It’s common for the photographers to shoot things twice to examine how things might change when in testing. When Stover saw the tape, she got to work ensuring her hunch was right.
She sent a series of images to the thermal team lead letting him know what she found. Plans were already underway to change the design.
The unexpected
Stover and Henry agree that documenting missions has come with some interesting experiences.
Both had to undergo fall protection harness training in the event they had to climb around one of Goddard’s cleanrooms, something that happened to Stover during one assignment.
“Once I was up in Building 29’s high bay. Like up at the very top in the crane rafters shooting. I never thought I was afraid of heights until that moment,” she said. “But I focused on the image and what task I was accomplishing and completed the assignment without issue.”
Henry said adjusting to Covid-19 required a lot of flexibility, especially with sudden changes.
“This is not a job you can do from home,” he said. “After a few months, we adapted.”
Radio Frequency testing of the PACE Earth Coverage Antenna in the Electromagnetic Anechoic Chamber at Goddard Space Flight Center.Credits: NASA’s Goddard Space Flight Center/Denny Henry Henry said that many times mission teams will find that engineering drawings won’t match up with what was actually built. With the pandemic restrictions, PACE heavily relied on his images to note how things changed and why issues occurred.
As PACE heads toward big milestones in the next year, both Stover and Henry are excited to see their work come together, including the day of launch.
They both agreed that photographing the teams involved in each aspect of PACE’s build is especially rewarding as they help create mementos that go along with their mission’s story.
By: Sara Blumberg
NASA’s Goddard Space Flight Center, Greenbelt, Md.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.