Jump to content

Stephanie Getty: Exploring the Universe with Curiosity and Wonder


Recommended Posts

  • Publishers
Posted
A white woman with blonde wavy hair addresses two people in the foreground, backs to the camera.
Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division, talks about NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) mission with Dr. Kate Calvin, the agency’s chief scientist.
Credits: Courtesy of Stephanie Getty

Name: Dr. Stephanie Getty

Title: Director of the Solar System Exploration Division, Sciences and Exploration Directorate and Deputy Principal Investigator of the DAVINCI Mission

Formal Job Classification: Planetary scientist

Organization: Solar System Exploration Division, Sciences and Exploration Directorate (Code 690)

A white woman with blonde wavy hair stands behind two halves of a large silver ball, one facing up like a bowl, the other downward on a table.
Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division, poses with a full-scale engineering unit of NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) descent sphere.
Credits: Courtesy of Stephanie Getty

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

As the Director of the Solar System Exploration Division, I work from a place of management to support our division’s scientists. As the deputy principal investigator of the DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) mission, I work with the principal investigator to lead the team in implementing this mission to study the atmosphere of Venus.

I love that I get to work from a place of advocacy in support of my truly excellent, talented colleagues. I get to think strategically to make the most of opportunities and do my best to overcome difficulties for the best possible future for our teams. It’s also a fun challenge that no two days are ever the same!

Why did you become a planetary scientist?

In school, I had a lot of interests and space was always one of them. I also loved reading, writing, math, biology, and chemistry. Being a planetary scientist touches on all of these.

My dad inspired me become a scientist because he loved his telescope and photography including of celestial bodies. We watched Carl Sagan’s “Cosmos” often.

I grew up in southeastern Florida, near Fort Lauderdale. I have a B.S. and Ph.D. in physics from the University of Florida.  

How did you come to Goddard?

A white woman with blonde wavy hair takes a selfie in front of a rainbow-colored row of flowers.
“My goal is to provide a supportive environment for our incredibly talented science community in the Division to thrive, to push discovery forward and improve the understanding of our solar system,” said Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division. “It’s a priority to encourage effective and open communication.”
Credits: Courtesy of Stephanie Getty

I had a post-doctoral fellowship in the physics department at the University of Maryland, and a local connection and a suggestion from my advisor led me to Goddard in 2004.

What is most important to you as director of the Solar System Exploration Division, Sciences and Exploration Directorate?

My goal is to provide a supportive environment for our incredibly talented science community in the Division to thrive, to push discovery forward and improve the understanding of our solar system. It’s a priority to encourage effective and open communication. I really try to value the whole person, recognizing that each of us is three-dimensional, with full personal lives. The people create the culture that allows our scientists to thrive and explore.

What are your goals as deputy principal investigator of the DAVINCI mission?

DAVINCI’s goal is to fill long-standing gaps about Venus, including whether it looked more like Earth in the past. Our energetic team brings together science, engineering, technology, project management, and business acumen to build a multi-element spacecraft that will explore Venus above the clouds, and during an hour-long descent through the atmosphere into the searingly hot and high pressure deep layers of the atmosphere near the surface. We hope to launch in June 2029.

What is your proudest accomplishment at Goddard?

I am pleased and proud to be deputy principal investigator on a major mission proposal that now gets to fly. It is an enormous privilege to be entrusted as part of the leadership team to bring the first probe mission back to Venus in over four decades.

What makes Goddard’s culture effective?

Goddard’s culture is at its best when we collectively appreciate how each member of the organization works towards solving our problems. The scientists appreciate the hard, detailed work that the engineers do to make designs. The engineers and project managers are energized by the fundamental science questions that underlie everything we do. And we have brilliant support staff that keeps our team organized and focused.

A white woman with blonde wavy hair stands in front of a white bridge on a sunny day.
“Curiosity is a defining characteristic of a good scientist, never losing a sense of wonder,” says Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division. “When I can, I try to make time to pause to reflect on how beautiful and special our own planet is.”
Credits: Courtesy of Stephanie Getty

What goes through your mind when you think about which fundamental science question to address and how?

A lot of the research I have done, including my mission work, has been inspired by the question of how life originates, how life originated on Earth, and whether there are or have been other environments in the solar system that could have ever supported life. These questions are profound to any human being. My job allows me to work with incredibly talented teams to make scientific progress on these questions.

It is really humbling.

Who inspired you?

My 10th grade English teacher encouraged us to connect with the natural world and to write down our experiences. Exploring the manifestations of nature connects with the way I approach my small piece of exploring the solar system. I really love the writing parts of my job, crafting the narrative around the science we do and why it is important.

As a mentor, what is the most important lesson you give?

A successful career should reflect both your passion and natural abilities. Know yourself. What feels rewarding to you is important. Learn how to be honest with yourself and let yourself be driven by curiosity.

Our modern lives can be very noisy at work and at home. It can be hard to filter through what is and is not important. Leaving space to connect with the things that satisfy your curiosity can be one way to make the most of the interconnectivity and complexity of life.

Curiosity not only connects us to the natural world, but also to each other. Curiosity is a defining characteristic of a good scientist, never losing a sense of wonder.

I’m looking out my window as we talk. When I can, I try to make time to pause to reflect on how beautiful and special our own planet is.

What are your hobbies?

I love hiking with my kids. Walking through the woods puts me in the moment and clears my mind better than anything else. It gives my brain a chance to relax. Nature gives perspective, it reminds me that I am part of something bigger. Walking in the woods gives me a chance to pause, for example, to notice an interesting rock formation, or watch a spider spinning an impressive web, or spot a frog trying to camouflage itself in a pond, and doing this with my children is my favorite pastime. 

Where is your favorite place in the world?

Any campsite at dusk with a fire going and eating s’mores with my family.

A graphic with a collection of people's portraits grouped together in front of a soft blue galaxy background. The people come from various races, ethnicities, and genders. A soft yellow star shines in the upper left corner, and the stylized text u0022Conversations with Goddardu0022 is in white on the far right.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Curiosity Blog, Sols 4634-4635: A Waiting Game
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Aug. 18, 2025 — Sol 4633, or Martian day 4,633 of the Mars Science Laboratory mission — at 12:39:47 UTC. NASA/JPL-Caltech Written by Lucy Thompson, Planetary Scientist and APXS Team Member, University of New Brunswick, Canada
      Earth Planning Date: Monday, Aug. 18, 2025
      The downlink data from our weekend activities arrived on Earth as we started planning this morning. As the APXS payload uplink and downlink lead, I assess the downlink data to ensure that our observations executed and that the instrument is healthy before we can proceed with the day’s activities. We also need that downlink data to assess which targets we can safely touch with Curiosity’s arm, to place APXS and MAHLI to analyze chemistry and closeup textures, respectively, as well as target for Mastcam and ChemCam, and plan the next drive. Because of the relatively late downlink, we all waited patiently for the necessary data to be processed before we could really start to plan in earnest. 
      It is always exciting to see our new parking spot and the view in front of the rover. Today was no exception. The drive executed as planned and we are on stable ground, which will enable us to unstow the arm for contact science with APXS and MAHLI.
      We selected a representative bedrock patch (“Gil”) that was large enough and smooth enough to brush for dust removal, and to place APXS and MAHLI on. ChemCam will also analyze this target with LIBS, and Mastcam will capture a documentation image. The bedrock at this location is representative of an intermediate zone between the large resistant ridges and hollows that comprise the boxwork terrain that we are currently exploring. Mastcam will image the wall of a prominent resistant ridge that we are driving to (“Río Frío”), as well as a narrow, sand-filled trough (“Cusi Cusi”). The remote long-distance imaging capabilities of ChemCam will be used to look at the base of the Mishe Mokwa butte, off to the east.
      Observations to monitor the atmosphere are also planned before we drive away from this location. They include a Navcam large dust-devil survey and suprahorizon movie, and a Mastcam tau observation to observe dust in the atmosphere. After the touch (and targeted science) part of this touch-and-go plan, the drive (go part) should take us about 36 meters (about 118 feet) to the wall of Río Frío. (see associated image). 
      After the drive, we will document the ground beneath the rover’s wheels with MARDI before some untargeted science. Mastcam will again image Río Frío in early morning light, trying to highlight structures and veins that might be present, and ChemCam will utilize their autonomous targeting capabilities to analyze a bedrock target in our new workspace. Two more atmospheric observations are also squeezed in before we hand over to the next plan: a Navcam cloud-altitude observation and line-of-sight scan. 
      Standard REMS, DAN and RAD activities round out this jam-packed plan. The downlink was well worth the wait!

      Want to read more posts from the Curiosity team?



      Visit Mission Updates


      Want to learn more about Curiosity’s science instruments?



      Visit the Science Instruments page


      NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








      Details
      Last Updated Aug 19, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4631-4633: Radiant Ridge Revolution


      Article


      1 hour ago
      2 min read Curiosity Blog, Sols 4629-4630: Feeling Hollow


      Article


      2 days ago
      2 min read Curiosity Blog, Sols 4627-4628: A Ridge Stop in the Boxworks


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4631-4633: Radiant Ridge Revolution
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on Aug. 14, 2025 — Sol 4629, or Martian day 4,629 of the Mars Science Laboratory mission — at 12:11:32 UTC. NASA/JPL-Caltech Written by Remington Free, Operations Systems Engineer at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, Aug. 15, 2025
      Today we uplinked a three-sol weekend plan with lots of exciting activities — to support both the science and engineering teams! 
      While usually our science activities take front and center stage, we often also do engineering maintenance activities as well to maintain the mechanisms and engineering health state of the rover. On Sol 4631, we planned a maintenance activity of our Battery Control Boards (BCBs) which are electronic control boards attached to the rover’s batteries and are what let us interact with the batteries as needed. This maintenance is done periodically to correct for any time drift on the BCBs, so we get as accurate of data as possible. 
      On this sol, we also did a dump of all of our parameters — these are essentially variables set onboard the rover which serve as inputs to a variety of functions. Occasionally we send a list of all these variables back down to the ground so we can verify they match as expected. We don’t want to have set a value and then forget about it!
      We, of course, also did science activities on this sol. After completing our engineering activities, we started off with some remote science; this included Mastcam imaging and ChemCam measurements of several interesting targets. These were chosen in order to assess variability within the “Cerro Paranal” ridge within view, and to document any layering or fractures in the rock. We then completed several arm activities in order to get more information on these targets through the use of our APXS spectrometer. 
      On Sol 4632, we planned some remote atmospheric science, including a Navcam dust-devil survey, a Mastcam tau (measurement of the atmospheric opacity), APXS atmospheric observations, and more imaging of some of the ridge targets we looked at in the previous sol. 
      On Sol 4633, we continued with more science imaging, including a horizon movie using Navcam and a dust-devil movie, before proceeding into our drive. We planned a drive of about 19 meters (about 62 feet) to the south, along the eastern edge of Cerro Paranal. After the drive, it is then standard for us to take new imaging of our new location. We’re excited to get these science images back and to hear how the drive went when the team comes back on Monday!

      Want to read more posts from the Curiosity team?



      Visit Mission Updates


      Want to learn more about Curiosity’s science instruments?



      Visit the Science Instruments page


      NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








      Details
      Last Updated Aug 19, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4629-4630: Feeling Hollow


      Article


      2 days ago
      2 min read Curiosity Blog, Sols 4627-4628: A Ridge Stop in the Boxworks


      Article


      5 days ago
      2 min read Curiosity Blog, Sols 4624-4626: A Busy Weekend at the Boxwork


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4629-4630: Feeling Hollow
      NASA’s Mars rover Curiosity acquired this image of its workspace, including the small crescent-shaped rock named “Wedge Tailed Hillstar,” visible in the image just above the letters “SI” written on Curiosity’s arm. Curiosity captured the image using its Left Navigation Camera on Aug. 13, 2025 — Sol 4628, or Martian day 4,628 of the Mars Science Laboratory mission — at 08:54:46 UTC. NASA/JPL-Caltech Written by Elena Amador-French, Science Operations Coordinator at NASA’s Jet Propulsion Laboratory
      Earth planning date: Wednesday, Aug. 13, 2025
      Today’s team investigated the texture and chemistry of the bedrock within a topographic low, or hollow, found within the greater boxwork area. We will place our APXS instrument on the “Asiruqucha” target, some light-toned, small-scale nodular bedrock in the middle of our workspace. These data will help illuminate any systematic chemical trends between the hollows and ridges in this area. We always take an associated MAHLI image with every APXS measurement to help contextualize the chemistry. We will also observe a small crescent-shaped rock named “Wedge Tailed Hillstar” with MAHLI, visible in the above Navcam image just above the letters “SI” written on Curiosity’s arm.
      We will use our remote sensing instruments to continue documenting the region taking stereo Mastcam images of “Cerro Paranal,” “Rio Frio,” and “Anchoveta.”  The ChemCam instrument will take an image of, and collect chemical information for, the target “Camanchaca,” as well as use its Remote Micro Imager (RMI) to take high-resolution imaging of more distant boxwork features. 
      Once these observations are completed Curiosity will set off on a 30-meter drive (about 98 feet), taking us to an interesting ridge feature to investigate in Friday’s plan.
      As usual we will continue to take our regular atmospheric monitoring observations using REMS, RAD, and DAN.

      Want to read more posts from the Curiosity team?



      Visit Mission Updates


      Want to learn more about Curiosity’s science instruments?



      Visit the Science Instruments page


      NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








      Details
      Last Updated Aug 18, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4627-4628: A Ridge Stop in the Boxworks


      Article


      3 days ago
      2 min read Curiosity Blog, Sols 4624-4626: A Busy Weekend at the Boxwork


      Article


      5 days ago
      2 min read Linking Local Lithologies to a Larger Landscape


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4627-4628: A Ridge Stop in the Boxworks
      NASA’s Mars rover Curiosity acquired this close-up view of the rock target “Bococo” at the intersection of several boxwork ridges, showing bright millimeter-scale nodules likely to be calcium sulfate. Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, which uses an onboard focusing process to merge multiple images of the same target, acquired at different focus positions, to bring all (or, as many as possible) features into focus in a single image. Curiosity performed the merge on Aug. 10, 2025 — Sol 4625, or Martian day 4,625 of the Mars Science Laboratory mission — at 08:00:39 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday Aug. 11, 2025
      Written by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center
      On the Curiosity team, we’re continuing our exploration of the boxwork-forming region in Gale Crater. A successful 25-meter drive (about 82 feet) brought the rover from the “peace sign” ridge intersection to a new ridge site. Several imaging investigations were pursued in today’s plan, including Mastcam observations of a potential incipient hollow (“Laguna Miniques”), and of a number of troughs to examine how fractures transition from bedrock to regolith.
      With six wheels on the ground, Curiosity was also ready to deploy the rover arm for some contact science. APXS and MAHLI measurements were planned to explore the local bedrock at two points with a brushed (DRT) measurement (“Santa Catalina”) and a non-DRT measurement (“Puerto Teresa”). A third MAHLI observation will be co-targeted with one of the LIBS geochemical measurements on a light-toned block, “Palma Seca.” Because we’re in nominal sols for this plan, we were able to plan a second targeted LIBS activity to measure the composition of a high-relief feature on another block, “Yavari” before the drive.
      The auto-targeted LIBS (AEGIS) that executed post-drive on sol 4626 had fallen on a bedrock target and will be documented in high resolution via Mastcam imaging.
      Two long-distance imaging mosaics were planned for the ChemCam remote imager (RMI): one on a potential scarp and lens in sediments exposed on the “Mishe Mokwa” butte in the strata above the rover’s current position, and the second on an east-facing boxwork ridge with apparently exposed cross-bedding that may be related to the previously explored “Volcán Peña Blanca” ridge.
      As usual, the modern Martian environment will also be observed with camera measurements of the atmospheric opacity, a Navcam movie to watch for dust lifting, and the usual REMS and DAN passive monitoring of the temperature, humidity, and neutron flux at the rover’s location.
      The next drive is planned to bring us to a spot in a hollow where we hope to plan contact science on the erosionally recessive hollow bedrock in addition to imaging with a good view of the rock layers exposed in the wall of another prominent ridge.

      Want to read more posts from the Curiosity team?



      Visit Mission Updates


      Want to learn more about Curiosity’s science instruments?



      Visit the Science Instruments page


      NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








      Details
      Last Updated Aug 14, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4624-4626: A Busy Weekend at the Boxwork


      Article


      2 days ago
      2 min read Linking Local Lithologies to a Larger Landscape


      Article


      1 week ago
      3 min read Curiosity Blog, Sols 4622-4623: Kicking Off (Earth) Year 14 With an Investigation of Veins


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4624-4626: A Busy Weekend at the Boxwork
      NASA’s Mars rover Curiosity captured this image of the three intersecting ridges in front of it this weekend that make a sort of “peace sign” shape. Curiosity acquired the image using its Left Navigation Camera on Aug. 8, 2025 — Sol 4623, or Martian day 4,623 of the Mars Science Laboratory mission — at 06:20:38 UTC. NASA/JPL-Caltech Written by Alex Innanen, Atmospheric Scientist at York University
      Earth planning date: Friday, Aug. 8, 2025
      We continue to progress through the boxwork structures, arriving today at the “peace sign” ridges we were aiming for in our last drive. We’re spending the first two sols of the weekend at this location, learning everything we can about the boxwork ridges all around us. Then we’re driving further along and spending our third sol at our next location doing a bit more untargeted science. 
      Our first sol includes three contact science targets, “Palmira,” “Casicasi,” and “Bococo,” which both MAHLI and APXS will be checking out nice and close. ChemCam is also using its LIBS laser to check out Bococo, and taking a mosaic of some more distant boxwork ridges. Not to be left out, Mastcam is taking a mosaic of the intersecting peace-sign-shaped ridges, which have been given the name “Ayopaya,” as well as another mosaic of the edge of one of the nearby ridges. The environmental science group (ENV) is also taking a dust-devil movie and a surpahorizon cloud movie.
      On our second sol, ChemCam has another LIBS observation of “Britania.” Mastcam has some more mosaics, today looking back at our wheel tracks to see what we might have turned up on our drive, as well as out to the more distant ridges. We also have another cloud movie coinciding with imaging from above by the CaSSIS camera on board the Trace Gas Orbiter, trying to spot the same clouds from above and below. After our drive Curiosity gets to take a nice long snooze before waking up early for our typical weekend morning ENV block, which includes three different cloud observations (it’s still the cloudy season, after all!) and two observations to look at dust in the crater and in the sky above. Later on this sol ChemCam will use AEGIS to autonomously pick a LIBS target, we’ll have a 360-degree survey to try to catch dust devils. Finally, we’re setting our sights back on the clouds, using cloud shadows on Mount Sharp to estimate cloud altitudes.

      Want to read more posts from the Curiosity team?



      Visit Mission Updates


      Want to learn more about Curiosity’s science instruments?



      Visit the Science Instruments page


      NASA’s Mars rover Curiosity at the base of Mount Sharp NASA/JPL-Caltech/MSSS Share








      Details
      Last Updated Aug 12, 2025 Related Terms
      Blogs Explore More
      2 min read Linking Local Lithologies to a Larger Landscape


      Article


      5 days ago
      3 min read Curiosity Blog, Sols 4622-4623: Kicking Off (Earth) Year 14 With an Investigation of Veins


      Article


      6 days ago
      3 min read Curiosity Blog, Sols 4618-4619: The Boxwork Structures Continue to Call to Us


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...