Jump to content

Phathom Donald Brings Space Closer as a Hubble Mission Engineer


Recommended Posts

  • Publishers
Posted
Phanthom Donald, a Black woman with long black dreadlocks and glasses, smiles and poses in the Hubble Space Telescope control room. She wears a burgundy polo and black pants and has a black tattooed band around her left forearm.
“I’m always proud every time I see a new picture taken by Hubble,u0022 said Phathom Donald, a satellite systems engineer for the Hubble Space Telescope. u0022It feels like an accomplishment and an honor even to be part of a mission that brings those images to people on Earth.”
u003cstrongu003eu003cemu003eCredits: NASA’s Goddard Space Flight Center / Rob Andreoliu003c/emu003eu003c/strongu003e

Name: Phathom Donald

Title: Mission Engineer

Formal Job Classification: Satellite Systems Engineer

Organization: Astrophysics Project Division, Hubble Space Telescope Operations Project, Code 441

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

As a member of the flight operations team for the Hubble Space Telescope, I monitor and evaluate the performance of Hubble’s subsystems through its telemetry. I send commands to Hubble as needed for routine maintenance, maintaining communication with the spacecraft, and recovery from onboard anomalies. I also support ground system maintenance to ensure that operations run smoothly and uninterrupted.

On the flight software team, I build and run simulations to verify flight software changes before they’re installed onto Hubble. Just like how your laptop or your smartphone gets regular updates to add new features or to fix bugs, Hubble gets flight software updates for added capabilities and to address new issues.

Being a flight controller was a dream of mine, so being able to command a spacecraft has been really exciting. I also really enjoy coding, and it’s been interesting seeing how all these critical and complicated activities happen at the same time. I think the work I do outside of my flight controller role has helped me become a better flight controller, because I have a better idea of what’s happening behind the scenes — things feel a bit more intuitive to me.

How did you find your path to Goddard?

During undergrad, I was on a path to become a power systems engineer. But one day in my senior design class, our professor invited the Transiting Exoplanet Survey Satellite (TESS) project manager at the time to speak to our class about systems engineering and its applications to the mission. Within five minutes of this presentation, I was on the verge of tears. This presentation alone changed the course of my career because it reminded me that I love the stars and I love space. More importantly, it made me feel like a career at NASA was actually possible.

So, I emailed the speaker and asked him for advice, and he responded with excellent guidance and encouragement. I saved that email and essentially used it as a career guide. After graduating, I worked for a NASA contractor first as a quality engineer, then as a model-based systems engineer. While I was in that role, I pursued my master’s, and about a month after graduating, I saw the job posting for Hubble’s flight operations team at Goddard. After a year or so of settling in, I reached out to that same speaker and I let him know I took his advice, I made it to NASA, and that I couldn’t be more grateful for his help. He responded beautifully, saying that he was humbled to have played any role in me getting to where I wanted to be.

What first sparked your interest in space?

My dad used to take my brothers and me to the Griffith Observatory in Los Angeles all the time. I loved going to those shows in the planetarium and just feeling engrossed in what they were teaching. I’d always wanted to take an astronomy class, but I didn’t get the chance until my last year of undergrad. I’m so glad I did; it just reaffirmed that space is for me.

Hubble mission engineer Phanthom Donald, a Black woman with long black dreadlocks in a large bun on the back of her head, gestures and speaks to a fellow engineer sitting in front of several large computer monitors.
u0022In moments where Hubble’s mission is at risk, I’ll look at the situation and think, ‘Okay, what can we do to either fix or mitigate this problem?’u0022 said Phathom Donald, a satellite systems engineer for the Hubble Space Telescope. u0022I do what I can with care, I communicate clearly with those I’m working with, and I trust the abilities of my colleagues.”
u003cstrongu003eu003cemu003eCredits: NASA’s Goddard Space Flight Center / Rebecca Rothu003c/emu003eu003c/strongu003e

What is your educational background?

I graduated from Howard University in Washington, D.C., in 2014 with a bachelor’s in electrical engineering. I also have a master’s in space systems engineering from Stevens Institute of Technology in Hoboken, New Jersey. Right now, I’m pursuing a graduate certificate in control systems from the University of Michigan at Dearborn to prepare for a role supporting Hubble’s pointing and control subsystems. After I’m done, I plan to pursue a graduate certificate in aerospace for that same reason; I want to pick up and hone skills in order to maximize my contributions to Hubble.

How do you keep a cool head when you have a mission-critical situation?

I think I’m generally a pretty calm person, but in moments where Hubble’s mission is at risk, I tend to focus on what is in my power to get done. So I’ll look at the situation and think, “OK, what can we do to either fix or mitigate this problem?” And I do what I can with care, I communicate clearly with those I’m working with, and I trust the abilities of my colleagues. I work with really brilliant, dedicated people who love what they do, so I know that they’re going to do what’s best for the mission.

What is your proudest accomplishment at Goddard?

To be honest, I’m always proud every time I see a new picture taken by Hubble, especially after we’ve recovered it from an anomaly. It feels like an accomplishment and an honor even to be part of a mission that brings those images to people on Earth.

Who are your science role models, and how have they shaped your career in science?

Katherine Johnson: she was an African American mathematician who was pivotal in the success of the early human spaceflight missions carried out by NASA. Her complex trajectory calculations got the first man into space and back unharmed. I also admire Dr. Sian Proctor: she was the first Black woman to pilot a spacecraft.

As a minority, it can be easy to feel like an outlier in the space industry. Seeing people like Katherine and Dr. Proctor succeed and excel in these fields adds a bit of comfort. They show me that these technically demanding roles are attainable.

How do you like to spend your time outside of work? What are your hobbies?

I spend a lot of time with my tiny dog, Chara. I named her after a yellow star in the Hunting Dogs constellation. Chara is Greek for “joy,” and to say she brings me joy would be an understatement.

I actually have a new obsession with snorkeling and freediving. I went snorkeling for the first time in early 2021 and it completely changed my life. Before snorkeling, I was terrified of water. After snorkeling, I wanted to be a fish. I just love the freedom that comes with the lack of equipment. I love the peace that I feel underwater.

What is your “six-word memoir”? A six-word memoir describes something in just six words.

“The stars are not too far.”

What is some advice you would give your 10-year-old self?

You are capable of more than you know, more than what people might try to make you believe. Do what makes you feel fulfilled and define your own success. Your passion is your strength.

By Hannah Richter
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A graphic with a collection of people's portraits grouped together in front of a soft blue galaxy background. The people come from various races, ethnicities, and genders. A soft yellow star shines in the upper left corner, and the stylized text u0022Conversations with Goddardu0022 is in white on the far right.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Educators, join our free two-part webinar, and learn about bringing coding and citizen science to your learners!
      The Global Learning and Observation to Benefit the Environment (GLOBE) program is a science and education program that focuses on advancing Earth systems science through data collection and analysis by citizen scientists. These webinars introduce GLOBE Mission Mosquito—a global program where students and community members collect environmental data—and EMERGE, a Florida-based but widely adaptable project that turns those data into insights about mosquito-borne disease risk.
      Session 1 (Sept 17 at 6 PM ET): Introduction to EMERGE and GLOBE. You’ll learn how students can collect mosquito habitat and land cover data with the free GLOBE Observer app, then complete a guided coding assignment to visualize those observations on maps and explore connections with NASA satellite data. It’s a friendly environment for people who haven’t coded before!
      Session 2 (Sept 24 at 6 PM ET): We’ll regroup to review the coding assignment—troubleshoot issues, share sample outputs, and discuss strategies for adapting the lesson in classrooms, afterschool programs, and libraries.

      Register for one or both!

      Learn more about EMERGE
      Learn more about GLOBE Mosquito Habitat Mapper
      Facebook logo @nasascience @nasascience Instagram logo @nasascience Linkedin logo @nasascience Share








      Details
      Last Updated Sep 16, 2025 Related Terms
      Citizen Science Explore More
      5 min read From NASA Citizen Scientist to Astronaut Training: An Interview with Benedetta Facini


      Article


      3 weeks ago
      2 min read A Gigantic Jet Caught on Camera: A Spritacular Moment for NASA Astronaut Nicole Ayers!
      Astronaut Captures Rare Gigantic Jet from Space On July 3, 2025, NASA astronaut Nichole Ayers…


      Article


      1 month ago
      1 min read Snapshot Wisconsin Celebrates 10 Years and 100 Million Photos Collected!
      The Snapshot Wisconsin project recently collected their 100 millionth trail camera photo! What’s more, this…


      Article


      1 month ago
      View the full article
    • By NASA
      The IAU (International Astronomical Union), an international non-governmental research organization and global naming authority for celestial objects, has approved official names for features on Donaldjohanson, an asteroid NASA’s Lucy spacecraft visited on April 20. In a nod to the fossilized inspiration for the names of the asteroid and spacecraft, the IAU’s selections recognize significant sites and discoveries on Earth that further our understanding of humanity’s origins.
      The asteroid was named in 2015 after paleoanthropologist Donald Johanson, discoverer of one of the most famous fossils ever found of a female hominin, or ancient human ancestor, nicknamed Lucy. Just as the Lucy fossil revolutionized our understanding of human evolution, NASA’s Lucy mission aims to revolutionize our understanding of solar system evolution by studying at least eight Trojan asteroids that share an orbit with Jupiter.
      Postcard commemorating NASA’s Lucy spacecraft April 20, 2025, encounter with the asteroid Donaldjohanson. NASA’s Goddard Space Flight Center Donaldjohanson, located in the main asteroid belt between the orbits of Mars and Jupiter, was a target for Lucy because it offered an opportunity for a comprehensive “dress rehearsal” for Lucy’s main mission, with all three of its science instruments carrying out observation sequences very similar to the ones that will occur at the Trojans.
      After exploring the asteroid and getting to see its features up close, the Lucy science and engineering team proposed to name the asteroid’s surface features in recognition of significant paleoanthropological sites and discoveries, which the IAU accepted.
      The smaller lobe is called Afar Lobus, after the Ethiopian region where Lucy and other hominin fossils were found. The larger lobe is named Olduvai Lobus, after the Tanzanian river gorge that has also yielded many important hominin discoveries.
      The asteroid’s neck, Windover Collum, which joins those two lobes, is named after the Windover Archeological Site near Cape Canaveral Space Force Station in Florida — where NASA’s Lucy mission launched in 2021. Human remains and artifacts recovered from that site revolutionized our understanding of the people who lived in Florida around 7,300 years ago.
      Officially recognized names of geologic features on the asteroid Donaldjohanson. NASA Goddard/SwRI/Johns Hopkins APL Two smooth areas on the asteroid’s neck are named Hadar Regio, marking the specific site of Johanson’s discovery of the Lucy fossil, and Minatogawa Regio, after the location where the oldest known hominins in Japan were found. Select boulders and craters on Donaldjohanson are named after notable fossils ranging from pre-Homo sapiens hominins to ancient modern humans. The IAU also approved a coordinate system for mapping features on this uniquely shaped small world.
      As of Sept. 9, the Lucy spacecraft was nearly 300 million miles (480 million km) from the Sun en route to its August 2027 encounter with its first Trojan asteroid called Eurybates. This places Lucy about three quarters of the way through the main asteroid belt. Since its encounter with Donaldjohanson, Lucy has been cruising without passing close to any other asteroids, and without requiring any trajectory correction maneuvers.
      The team continues to carefully monitor the instruments and spacecraft as it travels farther from the Sun into a cooler environment.
      Stay tuned at nasa.gov/lucy for more updates as Lucy continues its journey toward the never-before-explored Jupiter Trojan asteroids.
      By Katherine Kretke
      Southwest Research Institute
      Explore More
      5 min read Avatars for Astronaut Health to Fly on NASA’s Artemis II


      Article


      1 day ago
      3 min read Weird Ways to Observe the Moon


      Article


      1 day ago
      2 min read Hubble Surveys Cloudy Cluster


      Article


      4 days ago
      View the full article
    • By NASA
      NASA’s Nancy Grace Roman Space Telescope will help scientists better understand our Milky Way galaxy’s less sparkly components — gas and dust strewn between stars, known as the interstellar medium.
      One of Roman’s major observing programs, called the Galactic Plane Survey, will peer through our galaxy to its most distant edge, mapping roughly 20 billion stars—about four times more than have currently been mapped. Scientists will use data from these stars to study and map the dust their light travels through, contributing to the most complete picture yet of the Milky Way’s structure, star formation, and the origins of our solar system.
      Our Milky Way galaxy is home to more than 100 billion stars that are often separated by trillions of miles. The spaces in between, called the interstellar medium, aren’t empty — they’re sprinkled with gas and dust that are both the seeds of new stars and the leftover crumbs from stars long dead. Studying the interstellar medium with observatories like NASA’s upcoming Nancy Grace Roman Space Telescope will reveal new insight into the galactic dust recycling system.
      Credit: NASA/Laine Havens; Music credit: Building Heroes by Enrico Cacace [BMI], Universal Production Music “With Roman, we’ll be able to turn existing artist’s conceptions of the Milky Way into more data-driven models using new constraints on the 3D distribution of interstellar dust,” said Catherine Zucker, an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts.
      Solving Milky Way mystery
      Scientists know how our galaxy likely looks by combining observations of the Milky Way and other spiral galaxies. But dust clouds make it hard to work out the details on the opposite side of our galaxy. Imagine trying to map a neighborhood while looking through the windows of a house surrounded by a dense fog.
      Roman will see through the “fog” of dust using a specialized camera and filters that observe infrared light — light with longer wavelengths than our eyes can detect. Infrared light is more likely to pass through dust clouds without scattering.
      This artist’s concept visualizes different types of light moving through a cloud of particles. Since infrared light has a longer wavelength, it can pass more easily through the dust. That means astronomers observing in infrared light can peer deeper into dusty regions.Credit: NASA’s Goddard Space Flight Center Light with shorter wavelengths, including blue light produced by stars, more easily scatters. That means stars shining through dust appear dimmer and redder than they actually are.
      By comparing the observations with information on the source star’s characteristics, astronomers can disentangle the star’s distance from how much its colors have been reddened. Studying those effects reveals clues about the dust’s properties.
      “I can ask, ‘how much redder and dimmer is the starlight that Roman detects at different wavelengths?’ Then, I can take that information and relate it back to the properties of the dust grains themselves, and in particular their size,” said Brandon Hensley, a scientist who studies interstellar dust at NASA’s Jet Propulsion Laboratory in Southern California.
      Scientists will also learn about the dust’s composition and probe clouds to investigate the physical processes behind changing dust properties.
      Clues in dust-influenced starlight hint at the amount of dust between us and a star. Piecing together results from many stars allows astronomers to construct detailed 3D dust maps. That would enable scientists like Zucker to create a model of the Milky Way, which will show us how it looks from the outside. Then scientists can better compare the Milky Way with other galaxies that we only observe from the outside, slotting it into a cosmological perspective of galaxy evolution.
      “Roman will add a whole new dimension to our understanding of the galaxy because we’ll see billions and billions more stars,” Zucker said. “Once we observe the stars, we’ll have the dust data as well because its effects are encoded in every star Roman detects.”
      Galactic life cycles
      The interstellar medium does more than mill about the Milky Way — it fuels star and planet formation. Dense blobs of interstellar medium form molecular clouds, which can gravitationally collapse and kick off the first stages of star development. Young stars eject hot winds that can cause surrounding dust to clump into planetary building blocks.
      “Dust carries a lot of information about our origins and how everything came to be,” said Josh Peek, an associate astronomer and head of the data science mission office at the Space Telescope Science Institute in Baltimore, Maryland. “Right now, we’re basically standing on a really large dust grain — Earth was built out of lots and lots of really tiny grains that grew together into a giant ball.”
      Roman will identify young clusters of stars in new, distant star-forming regions as well as contribute data on “star factories” previously identified by missions like NASA’s retired Spitzer Space Telescope.
      “If you want to understand star formation in different environments, you have to understand the interstellar landscape that seeds it,” Zucker said. “Roman will allow us to link the 3D structure of the interstellar medium with the 3D distribution of young stars across the galaxy’s disk.”
      Roman’s new 3D dust maps will refine our understanding of the Milky Way’s spiral structure, the pinwheel-like pattern where stars, gas, and dust bunch up like galactic traffic jams. By combining velocity data with dust maps, scientists will compare observations with predictions from models to help identify the cause of spiral structure—currently unclear.
      The role that this spiral pattern plays in star formation remains similarly uncertain. Some theories suggest that galactic congestion triggers star formation, while others contend that these traffic jams gather material but do not stimulate star birth.
      Roman will help to solve mysteries like these by providing more data on dusty regions across the entire Milky Way. That will enable scientists to compare many galactic environments and study star birth in specific structures, like the galaxy’s winding spiral arms or its central stellar bar.
      NASA’s Nancy Grace Roman Space Telescope will conduct a Galactic Plane Survey to explore our home galaxy, the Milky Way. The survey will map around 20 billion stars, each encoding information about intervening dust and gas called the interstellar medium. Studying the interstellar medium could offer clues about our galaxy’s spiral arms, galactic recycling, and much more.
      Credit: NASA, STScI, Caltech/IPAC The astronomy community is currently in the final stages of planning for Roman’s Galactic Plane Survey.
      “With Roman’s massive survey of the galactic plane, we’ll be able to have this deep technical understanding of our galaxy,” Peek said.
      After processing, Roman’s data will be available to the public online via the Roman Research Nexus and the Barbara A. Mikulski Archive for Space Telescopes, which will each provide open access to the data for years to come.
      “People who aren’t born yet are going to be able to do really cool analyses of this data,” Peek said. “We have a really beautiful piece of our heritage to hand down to future generations and to celebrate.”
      Roman is slated to launch no later than May 2027, with the team working toward a potential early launch as soon as fall 2026.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      Download additional images and video from NASA’s Scientific Visualization Studio.
      For more information about the Roman Space Telescope, visit:
      https://www.nasa.gov/roman
      By Laine Havens
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 16, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Galaxies Protostars Stars The Milky Way Explore More
      5 min read NASA’s Roman Team Selects Survey to Map Our Galaxy’s Far Side
      Article 2 years ago 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 5 months ago 7 min read One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions
      Article 2 months ago View the full article
    • By NASA
      Three New Missions Launch to Track Space Weather
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
  • Check out these Videos

×
×
  • Create New...