Jump to content

Phathom Donald Brings Space Closer as a Hubble Mission Engineer


Recommended Posts

  • Publishers
Posted
Phanthom Donald, a Black woman with long black dreadlocks and glasses, smiles and poses in the Hubble Space Telescope control room. She wears a burgundy polo and black pants and has a black tattooed band around her left forearm.
“I’m always proud every time I see a new picture taken by Hubble,u0022 said Phathom Donald, a satellite systems engineer for the Hubble Space Telescope. u0022It feels like an accomplishment and an honor even to be part of a mission that brings those images to people on Earth.”
u003cstrongu003eu003cemu003eCredits: NASA’s Goddard Space Flight Center / Rob Andreoliu003c/emu003eu003c/strongu003e

Name: Phathom Donald

Title: Mission Engineer

Formal Job Classification: Satellite Systems Engineer

Organization: Astrophysics Project Division, Hubble Space Telescope Operations Project, Code 441

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

As a member of the flight operations team for the Hubble Space Telescope, I monitor and evaluate the performance of Hubble’s subsystems through its telemetry. I send commands to Hubble as needed for routine maintenance, maintaining communication with the spacecraft, and recovery from onboard anomalies. I also support ground system maintenance to ensure that operations run smoothly and uninterrupted.

On the flight software team, I build and run simulations to verify flight software changes before they’re installed onto Hubble. Just like how your laptop or your smartphone gets regular updates to add new features or to fix bugs, Hubble gets flight software updates for added capabilities and to address new issues.

Being a flight controller was a dream of mine, so being able to command a spacecraft has been really exciting. I also really enjoy coding, and it’s been interesting seeing how all these critical and complicated activities happen at the same time. I think the work I do outside of my flight controller role has helped me become a better flight controller, because I have a better idea of what’s happening behind the scenes — things feel a bit more intuitive to me.

How did you find your path to Goddard?

During undergrad, I was on a path to become a power systems engineer. But one day in my senior design class, our professor invited the Transiting Exoplanet Survey Satellite (TESS) project manager at the time to speak to our class about systems engineering and its applications to the mission. Within five minutes of this presentation, I was on the verge of tears. This presentation alone changed the course of my career because it reminded me that I love the stars and I love space. More importantly, it made me feel like a career at NASA was actually possible.

So, I emailed the speaker and asked him for advice, and he responded with excellent guidance and encouragement. I saved that email and essentially used it as a career guide. After graduating, I worked for a NASA contractor first as a quality engineer, then as a model-based systems engineer. While I was in that role, I pursued my master’s, and about a month after graduating, I saw the job posting for Hubble’s flight operations team at Goddard. After a year or so of settling in, I reached out to that same speaker and I let him know I took his advice, I made it to NASA, and that I couldn’t be more grateful for his help. He responded beautifully, saying that he was humbled to have played any role in me getting to where I wanted to be.

What first sparked your interest in space?

My dad used to take my brothers and me to the Griffith Observatory in Los Angeles all the time. I loved going to those shows in the planetarium and just feeling engrossed in what they were teaching. I’d always wanted to take an astronomy class, but I didn’t get the chance until my last year of undergrad. I’m so glad I did; it just reaffirmed that space is for me.

Hubble mission engineer Phanthom Donald, a Black woman with long black dreadlocks in a large bun on the back of her head, gestures and speaks to a fellow engineer sitting in front of several large computer monitors.
u0022In moments where Hubble’s mission is at risk, I’ll look at the situation and think, ‘Okay, what can we do to either fix or mitigate this problem?’u0022 said Phathom Donald, a satellite systems engineer for the Hubble Space Telescope. u0022I do what I can with care, I communicate clearly with those I’m working with, and I trust the abilities of my colleagues.”
u003cstrongu003eu003cemu003eCredits: NASA’s Goddard Space Flight Center / Rebecca Rothu003c/emu003eu003c/strongu003e

What is your educational background?

I graduated from Howard University in Washington, D.C., in 2014 with a bachelor’s in electrical engineering. I also have a master’s in space systems engineering from Stevens Institute of Technology in Hoboken, New Jersey. Right now, I’m pursuing a graduate certificate in control systems from the University of Michigan at Dearborn to prepare for a role supporting Hubble’s pointing and control subsystems. After I’m done, I plan to pursue a graduate certificate in aerospace for that same reason; I want to pick up and hone skills in order to maximize my contributions to Hubble.

How do you keep a cool head when you have a mission-critical situation?

I think I’m generally a pretty calm person, but in moments where Hubble’s mission is at risk, I tend to focus on what is in my power to get done. So I’ll look at the situation and think, “OK, what can we do to either fix or mitigate this problem?” And I do what I can with care, I communicate clearly with those I’m working with, and I trust the abilities of my colleagues. I work with really brilliant, dedicated people who love what they do, so I know that they’re going to do what’s best for the mission.

What is your proudest accomplishment at Goddard?

To be honest, I’m always proud every time I see a new picture taken by Hubble, especially after we’ve recovered it from an anomaly. It feels like an accomplishment and an honor even to be part of a mission that brings those images to people on Earth.

Who are your science role models, and how have they shaped your career in science?

Katherine Johnson: she was an African American mathematician who was pivotal in the success of the early human spaceflight missions carried out by NASA. Her complex trajectory calculations got the first man into space and back unharmed. I also admire Dr. Sian Proctor: she was the first Black woman to pilot a spacecraft.

As a minority, it can be easy to feel like an outlier in the space industry. Seeing people like Katherine and Dr. Proctor succeed and excel in these fields adds a bit of comfort. They show me that these technically demanding roles are attainable.

How do you like to spend your time outside of work? What are your hobbies?

I spend a lot of time with my tiny dog, Chara. I named her after a yellow star in the Hunting Dogs constellation. Chara is Greek for “joy,” and to say she brings me joy would be an understatement.

I actually have a new obsession with snorkeling and freediving. I went snorkeling for the first time in early 2021 and it completely changed my life. Before snorkeling, I was terrified of water. After snorkeling, I wanted to be a fish. I just love the freedom that comes with the lack of equipment. I love the peace that I feel underwater.

What is your “six-word memoir”? A six-word memoir describes something in just six words.

“The stars are not too far.”

What is some advice you would give your 10-year-old self?

You are capable of more than you know, more than what people might try to make you believe. Do what makes you feel fulfilled and define your own success. Your passion is your strength.

By Hannah Richter
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A graphic with a collection of people's portraits grouped together in front of a soft blue galaxy background. The people come from various races, ethnicities, and genders. A soft yellow star shines in the upper left corner, and the stylized text u0022Conversations with Goddardu0022 is in white on the far right.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Technicians move the Orion spacecraft for NASA’s Artemis II test flight out of the Neil A. Armstrong Operations and Checkout Building to the Multi-Payload Processing Facility at Kennedy Space Center in Florida on Saturday, May 3, 2025. NASA/Kim Shiflett Engineers, technicians, mission planners, and the four astronauts set to fly around the Moon next year on Artemis II, NASA’s first crewed Artemis mission, are rapidly progressing toward launch.

      At the agency’s Kennedy Space Center in Florida, teams are working around the clock to move into integration and final testing of all SLS (Space Launch System) and Orion spacecraft elements. Recently they completed two key milestones – connecting the SLS upper stage with the rest of the assembled rocket and moving Orion from its assembly facility to be fueled for flight.

      “We’re extremely focused on preparing for Artemis II, and the mission is nearly here,” said Lakiesha Hawkins, assistant deputy associate administrator for NASA’s Moon to Mars Program, who also will chair the mission management team during Artemis II. “This crewed test flight, which will send four humans around the Moon, will inform our future missions to the Moon and Mars.”
      Teams with NASA’s Exploration Ground Systems Program begin integrating the interim cryogenic propulsion stage to the SLS (Space Launch System) launch vehicle stage adapter on Wednesday, April 30, 2025, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. NASA/Isaac Watson On May 1, technicians successfully attached the interim cryogenic propulsion stage to the SLS rocket elements already poised atop mobile launcher 1, including its twin solid rocket boosters and core stage, inside the spaceport’s Vehicle Assembly Building (VAB). This portion of the rocket produces 24,750 pounds of thrust for Orion after the rest of the rocket has completed its job. Teams soon will move into a series of integrated tests to ensure all the rocket’s elements are communicating with each other and the Launch Control Center as expected. The tests include verifying interfaces and ensuring SLS systems work properly with the ground systems.

      Meanwhile, on May 3, Orion left its metaphorical nest, the Neil Armstrong Operations & Checkout Facility at Kennedy, where it was assembled and underwent initial testing. There the crew module was outfitted with thousands of parts including critical life support systems for flight and integrated with the service module and crew module adapter. Its next stop on the road to the launch pad is the Multi-Payload Processing Facility, where it will be carefully fueled with propellants, high pressure gases, coolant, and other fluids the spacecraft and its crew need to maneuver in space and carry out the mission.

      After fueling is complete, the four astronauts flying on the mission around the Moon and back over the course of approximately 10 days, will board the spacecraft in their Orion Crew Survival System spacesuits to test all the equipment interfaces they will need to operate during the mission. This will mark the first time NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, will board their actual spacecraft while wearing their spacesuits. After the crewed testing is complete, technicians will move Orion to Kennedy’s Launch Abort System Facility, where the critical escape system will be added. From there, Orion will move to the VAB to be integrated with the fully assembled rocket.

      NASA also announced its second agreement with an international space agency to fly a CubeSat on the mission. The collaborations provide opportunities for other countries to work alongside NASA to integrate and fly technology and experiments as part of the agency’s Artemis campaign.

      While engineers at Kennedy integrate and test hardware with their eyes on final preparations for the mission, teams responsible for launching and flying the mission have been busy preparing for a variety of scenarios they could face.

      The launch team at Kennedy has completed more than 30 simulations across cryogenic propellant loading and terminal countdown scenarios. The crew has been taking part in simulations for mission scenarios, including with teams in mission control. In April, the crew and the flight control team at NASA’s Johnson Space Center in Houston simulated liftoff through a planned manual piloting test together for the first time. The crew also recently conducted long-duration fit checks for their spacesuits and seats, practicing several operations while under various suit pressures.
      NASA astronaut Christina Koch participates in a fit check April 18, 2025, in the spacesuit she will wear during Artemis II. NASA/Josh Valcarcel Teams are heading into a busy summer of mission preparations. While hardware checkouts and integration continue, in coming months the crew, flight controllers, and launch controllers will begin practicing their roles in the mission together as part of integrated simulations. In May, the crew will begin participating pre-launch operations and training for emergency scenarios during launch operations at Kennedy and observe a simulation by the launch control team of the terminal countdown portion of launch. In June, recovery teams will rehearse procedures they would use in the case of a pad or ascent abort off the coast of Florida, with launch and flight control teams supporting. The mission management team, responsible for reviewing mission status and risk assessments for issues that arise and making decisions about them, also will begin practicing their roles in simulations. Later this summer, the Orion stage adapter will arrive at the VAB from NASA’s Marshall Spaceflight Center in Huntsville, Alabama, and stacked on top of the rocket.

      NASA astronauts Reid Wiseman (foreground) and Victor Glover participate in a simulation of their Artemis II entry profile on March 13, 2025.NASA/Bill Stafford Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      View the full article
    • By Space Force
      The two-week event, held at Vandenberg Space Force Base, focuses on strengthening international partnerships, enhancing operational collaboration and promoting responsible behavior in space.

      View the full article
    • By NASA
      6 min read
      Quantum Sensing via Matter-Wave Interferometry Aboard the International Space Station
      Future space missions could use quantum technologies to help us understand the physical laws that govern the universe, explore the composition of other planets and their moons, gain insights into unexplained cosmological phenomena, or monitor ice sheet thickness and the amount of water in underground aquafers on Earth.
      Upgraded hardware being prepared at Jet Propulsion Lab for launch and install into the Cold Atom Lab on the International Space Station. The Science Module in the background enables CAL researchers to conduct atom interferometry research in Earth’s orbit. Credit: NASA/JPL-Caltech NASA’s Cold Atom Lab (CAL), a first-of-its-kind facility aboard the International Space Station, has performed a series of trailblazing experiments based on the quantum properties of ultracold atoms. The tool used to perform these experiments is called an atom interferometer, and it can precisely measure gravity, magnetic fields, and other forces.
      Atom interferometers are currently being used on Earth to study the fundamental nature of gravity and are also being developed to aid aircraft and ship navigation, but use of an atom interferometer in space will enable innovative science capabilities.
      Physicists have been eager to apply atom interferometry in space, both to enable new measurements for space science and to capitalize on the extended free-fall conditions found in space. This could enable researchers to achieve unprecedented performance from these quantum sensors.
      These interferometers, however, require exquisitely sensitive equipment, and they were previously considered too fragile to function for extended periods without hands-on attention. The Cold Atom Lab, which is operated remotely from Earth, has now demonstrated that it is possible to conduct atom interferometry in space. The CAL Science Team has published two papers so far documenting these experimental milestones.
      Depiction of the atom interferometer (AI) setup onboard the ISS in CAL (on the right), showing the interior components of the instrument, and the path of a retro-reflected laser beam (red) inside the vacuum system. The expanded image on the left shows the beam entering the vacuum chamber through a window and between pairs of traces on the atom chip, which are used to confine and cool the atoms to ultracold temperatures. Credit: NASA/JPL-Caltech The results of the first study, published in the November 2023 issue of Nature, described the demonstration of simultaneous atom interferometry with both rubidium and potassium quantum gases for the first time in space. The dual-species atom interferometer not only exhibited robust and repeatable operation of atom interferometry in Earth orbit, but it also served as a pathfinder for future experiments that aim to use quantum gases to test the universality of free fall, a key tenet of Einstein’s theory of general relativity.
      In the second study, the results of which were featured in the August 2024 issue of Nature Communications, members of the science team used the CAL atom interferometer to measure subtle vibrations of the space station and to remotely measure the frequency of the atom interferometer laser— the first time ultra-cold atoms have been used to detect changes in the surrounding environment in space. This paper also reported on the demonstration of the wave-like nature of matter persisting for the longest ever freefall time (over a tenth of a second) in space.
      “Reaching these milestones was incredibly challenging, and our success was not always a given,” said Jason Williams, the Cold Atom Lab project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It took dedication and a sense of adventure by the team to make this happen.”
      Space-based sensors that can measure gravity with high precision have a wide range of potential applications. They could reveal the composition of planets and moons in our solar system, because different materials have different densities that create subtle variations in gravity.
      The U.S.-German GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) mission is currently collecting gravity measurements using classical sensors that detect slight changes in gravity to track the movement of water and ice on Earth. A future mission using atom interferometry could provide better precision and stability, revealing even more detail about surface mass changes.
      Precise measurements of gravity could also offer insights into the nature of dark matter and dark energy, two major cosmological mysteries. Dark matter is an invisible substance that makes up about 27% of the universe, while the “regular” matter that composes planets, stars, and everything else we can see makes up only 5%. Dark energy makes up the remaining 68% of the universe and is the driver of the universe’s accelerating expansion.
      “Atom interferometry could also be used to test Einstein’s theory of general relativity in new ways,” said University of Virginia professor Cass Sackett, a Cold Atom Lab principal investigator. “This is the basic theory explaining the large-scale structure of our universe, and we know that there are aspects of the theory that we don’t understand correctly. This technology may help us fill in those gaps and give us a more complete picture of the reality we inhabit.”
      About the size of a minifridge, the Cold Atom Lab launched to the space station in 2018 with the goal of advancing quantum science by placing a long-term facility in the microgravity environment of low Earth orbit. The lab cools atoms to almost absolute zero, or minus 459 degrees Fahrenheit (minus 273 degrees Celsius). At this temperature, some atoms can form a Bose-Einstein condensate, a state of matter in which all atoms essentially share the same quantum identity. As a result, some of the atoms’ typically microscopic quantum properties become macroscopic, making them easier to study.
      Quantum properties can sometimes cause atoms to act like solid objects and sometimes like waves. Scientists don’t yet entirely understand how the building blocks of matter can transition between such different physical behaviors, but they’re using quantum technology like what’s available on the Cold Atom Lab to seek answers.
      In microgravity, Bose-Einstein condensates can reach colder temperatures and can exist for longer, giving scientists more opportunities to study them. The atom interferometer is among several tools in the CAL facility enabling precision measurements by harnessing the quantum nature of atoms.
      Dual-species atom interferometry in space. (Left) Normalized population for ultracold gases of potassium (blue) and rubidium (red) in one of two output states following a simultaneous dual-species atom interferometry sequence. (Right) Correlations observed in the relative population of potassium and rubidium output states. Credit: NASA/JPL-Caltech Due to its wave-like behavior, a single atom can simultaneously travel two physically separate paths. If gravity or other forces are acting on those waves, scientists can measure that influence by observing how the waves recombine and interact.
      “I expect that space-based atom interferometry will lead to exciting new discoveries, fantastic quantum technologies impacting everyday life, and will transport us into a quantum future,” said Nick Bigelow, a professor at University of Rochester in New York and Cold Atom Lab principal investigator for a consortium of U.S. and German scientists who co-authored the studies cited above.
      Designed and built at the NASA Jet Propulsion Laboratory, Cold Atom Lab is sponsored by the Biological and Physical Sciences (BPS) Division of NASA’s Science Mission Directorate at the Agency’s headquarters in Washington DC and the International Space Station Program at NASA’s Johnson Space Center in Houston, Texas. The work carried out at the Jet Propulsion Laboratory, California Institute of Technology, was executed under a contract with the National Aeronautics and Space Administration.
      Learn more about Cold Atom Lab at https://coldatomlab.jpl.nasa.gov/
      Just how cold are the atoms in Cold Atom Lab? Find out at https://www.jpl.nasa.gov/news/news.php?feature=7311
      To learn more about the Cold Atom Lab’s recent upgrades visit https://www.jpl.nasa.gov/news/upgrading-the-space-stations-cold-atom-lab-with-mixed-reality and https://www.jpl.nasa.gov/news/news.php?feature=7660
      Project Lead: Kamal Oudrhiri, Jet Propulsion Laboratory, California Institute of Technology
      Sponsoring Organization:  Biological and Physical Sciences Division (BPS)
      Share








      Details
      Last Updated May 06, 2025 Related Terms
      Technology Highlights Biological & Physical Sciences Cold Atom Laboratory (CAL) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) Science-enabling Technology View the full article
    • By Space Force
      Guardians connected with members of Congress at a special screening of "The U.S. Space Force — America's Invisible Front Line" documentary at the U.S. Capitol Visitor Center April 30, 2025.

      View the full article
    • By NASA
      This NASA/ESA Hubble Space Telescope image features a peculiar spiral galaxy called Arp 184 or NGC 1961.ESA/Hubble & NASA, J. Dalcanton, R. J. Foley (UC Santa Cruz), C. Kilpatrick A beautiful but skewed spiral galaxy dazzles in this NASA/ESA Hubble Space Telescope image. The galaxy, called Arp 184 or NGC 1961, sits about 190 million light-years away from Earth in the constellation Camelopardalis (The Giraffe).
      The name Arp 184 comes from the Atlas of Peculiar Galaxies compiled by astronomer Halton Arp in 1966. It holds 338 galaxies that are oddly shaped and tend to be neither entirely elliptical nor entirely spiral-shaped. Many of the galaxies are in the process of interacting with other galaxies, while others are dwarf galaxies without well-defined structures. Arp 184 earned its spot in the catalog thanks to its single broad, star-speckled spiral arm that appears to stretch toward us. The galaxy’s far side sports a few wisps of gas and stars, but it lacks a similarly impressive spiral arm.
      This Hubble image combines data from three Snapshot observing programs, which are short observations that slotted into time gaps between other proposals. One of the three programs targeted Arp 184 for its peculiar appearance. This program surveyed galaxies listed in the Atlas of Peculiar Galaxies as well as A Catalogue of Southern Peculiar Galaxies and Associations, a similar catalog compiled by Halton Arp and Barry Madore.
      The remaining two Snapshot programs looked at the aftermath of fleeting astronomical events like supernovae and tidal disruption events — like when a supermassive black hole rips a star apart after it wanders too closely. Since Arp 184 hosted four known supernovae in the past three decades, it is a rich target for a supernova hunt.
      Image credit: ESA/Hubble & NASA, J. Dalcanton, R. J. Foley (UC Santa Cruz), C. Kilpatrick
      View the full article
  • Check out these Videos

×
×
  • Create New...