Members Can Post Anonymously On This Site
Earth from Space: Snow-capped Swiss Alps
-
Similar Topics
-
By NASA
3 Min Read NASA Invests in Future STEM Workforce Through Space Grant Awards
NASA is awarding up to $870,000 annually to 52 institutions across the United States, the District of Columbia, and Puerto Rico over the next four years. The investments aim to create opportunities for the next generation of innovators by supporting workforce development, science, technology, engineering and math education, and aerospace collaboration nationwide.
The Space Grant College and Fellowship Program (Space Grant), established by Congress in 1989, is a workforce development initiative administered through NASA’s Office of STEM Engagement (OSTEM). The program’s mission is to produce a highly skilled workforce prepared to advance NASA’s mission and bolster the nation’s aerospace sector.
“The Space Grant program exemplifies NASA’s commitment to cultivating a new generation of STEM leaders,” said Torry Johnson, deputy associate administrator of the STEM Engagement Program at NASA Headquarters in Washington. “By partnering with institutions across the country, we ensure that students have the resources, mentorship, and experiences needed to thrive in the aerospace workforce.”
The following is a complete list of awardees:
University of Alaska, Fairbanks University of Alabama, Huntsville University of Arkansas, Little Rock University of Arizona University of California, San Diego University of Colorado, Boulder University of Hartford, Connecticut American University, Washington, DC University of Delaware University of Central Florida Georgia Institute of Technology University of Hawaii, Honolulu Iowa State University, Ames University of Idaho, Moscow University of Illinois, Urbana-Champaign Purdue University, Indiana Wichita State University, Kansas University of Kentucky, Lexington Louisiana State University and A&M College Massachusetts Institute of Technology Johns Hopkins University, Maryland Maine Space Grant Consortium University of Michigan, Ann Arbor University of Minnesota Missouri University of Science and Technology University of Mississippi Montana State University, Bozeman North Carolina State University University of North Dakota, Grand Forks University of Nebraska, Omaha University of New Hampshire, Durham Rutgers University, New Brunswick, New Jersey New Mexico State University Nevada System of Higher Education Cornell University, New York Ohio Aerospace Institute University of Oklahoma Oregon State University Pennsylvania State University University of Puerto Rico Brown University, Rhode Island College of Charleston, South Carolina South Dakota School of Mines & Technology Vanderbilt University, Tennessee University of Texas, Austin University of Utah, Salt Lake City Old Dominion University Research Foundation, Virginia University of Vermont, Burlington University of Washington, Seattle Carthage College, Wisconsin West Virginia University University of Wyoming Space Grant operates through state-based consortia, which include universities, university systems, associations, government agencies, industries, and informal education organizations engaged in aerospace activities. Each consortium’s lead institution coordinates efforts within its state, expanding opportunities for students and researchers while promoting collaboration with NASA and aerospace-related industries nationwide.
To learn more about NASA’s missions, visit: https://www.nasa.gov/
View the full article
-
By NASA
Inside a laboratory in the Space Systems Processing Facility at NASA’s Kennedy Space Center in Florida, a payload implementation team member harvests ‘Outredgeous’ romaine lettuce growing in the Advanced Plant Habitat ground unit on Thursday, April 24, 2025. The harvest is part of the ground control work supporting Plant Habitat-07, which launched to the International Space Station aboard NASA’s SpaceX 31st commercial resupply services mission.
The experiment focuses on studying how optimal and suboptimal moisture conditions affect plant growth, nutrient content, and the plant microbiome in microgravity. Research like this continues NASA’s efforts to grow food that is not only safe but also nutritious for astronauts living and working in the harsh environment of space.
The ‘Outredgeous’ romaine lettuce variety was first grown aboard the space station in 2014, and Plant Habitat-07 builds on that legacy, using the station’s Advanced Plant Habitat to expand understanding of how plants adapt to spaceflight conditions. Findings from this work will support future long-duration missions to the Moon, Mars, and beyond, and could also lead to agricultural advances here on Earth.
Image credit: NASA/Kim Shiflett
View the full article
-
By NASA
NASA In this photo taken on Feb. 8, 1984, NASA astronaut Ronald E. McNair plays his saxophone while off-duty during the STS-41B mission. He and fellow crew members Vance D. Brand, Robert L. Gibson, Robert L. Stewart, and Bruce McCandless II launched on the space shuttle Challenger from NASA’s Kennedy Space Center in Florida on Feb. 3, 1984. During the mission, McCandless and Stewart performed the first untethered spacewalks.
McNair, who was nationally recognized for his work in laser physics, was selected as an astronaut candidate in January 1978. He completed a one-year training and evaluation period in August 1979, qualifying him for assignment as a mission specialist astronaut on space shuttle flight crews. STS-41B was his first flight.
Check out STS-41B mission highlights, narrated by the crew.
Image credit: NASA
View the full article
-
By NASA
Crew members are kicking off operations for several biological experiments that recently launched to the International Space Station aboard NASA’s 32nd SpaceX commercial resupply services mission. These include examining how microgravity affects production of protein by microalgae, testing a microscope to capture microbial activity, and studying genetic activity in biofilms.
Microalgae in microgravity
Sophie’s BioNutrients This ice cream is one of several products made with a protein powder created from Chorella microalgae by researchers for the SOPHONSTER investigation, which looks at whether the stress of microgravity affects the algae’s protein yield. Microalgae are nutrient dense and produce proteins with essential amino acids, beneficial fatty acids, B vitamins, iron, and fiber. These organisms also can be used to make fuel, cooking oil, medications, and materials. Learning more about microalgae growth and protein production in space could support development of sustainable alternatives to meat and dairy. Such alternatives could provide a food source on future space voyages and for people on Earth and be used to make biofuels and bioactive compounds in medicines.
Microscopic motion
Portland State University These swimming microalgae are visible thanks to the Extant Life Volumetric Imaging System or ELVIS, a fluorescent 3D imaging microscope that researchers are testing aboard the International Space Station. The investigation studies both active behaviors and genetic changes of microscopic algae and marine bacteria in response to spaceflight. ELVIS is designed to autonomously capture microscopic motion in 3D, a capability not currently available on the station. The technology could be useful for a variety of research in space and on Earth, such as monitoring water quality and detecting potentially infectious organisms.
Genetics of biofilms
BioServe This preflight image shows sample chambers for the Genetic Exchange in Microgravity for Biofilm Bioremediation (GEM-B2) investigation, which examines the mechanisms of gene transfer within biofilms under microgravity conditions. Biofilms are communities of microorganisms that collect and bind to a surface. They can clog and foul water systems, often leave a residue that can cause infections, and may become resistant to antibiotics. Researchers could use results from this work to develop genetic manipulations that inhibit biofilm formation, helping to maintain crew health and safety aboard the International Space Station and on future missions.
Learn more about microgravity research and technology development aboard the space station on this webpage.
Keep Exploring Discover More Topics From NASA
Space Station Research and Technology
Latest News from Space Station Research
Space Station Research Results
NASA Science, Cargo Launch on 32nd SpaceX Resupply Station Mission
View the full article
-
By NASA
3 min read
Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!
The Galaxy Zoo classification interface shows you an image from NASA’s Webb telescope and asks you questions about it. Image credit: Galaxy Zoo, Zooniverse. Inset galaxy: NASA/STScI/CEERS/TACC/S. Finkelstein/M. Bagley/Z. Levay/A. Pagan NASA needs your help identifying the shapes of thousands of galaxies in images taken by our James Webb Space Telescope with the Galaxy Zoo project. These classifications will help scientists answer questions about how the shapes of galaxies have changed over time, what caused these changes, and why. Thanks to the light collecting power of Webb, there are now over 500,000 images of galaxies on website of the Galaxy Zoo citizen science project—more images than scientists can classify by themselves.
“This is a great opportunity to see images from the newest space telescope,” said volunteer Christine Macmillan from Aberdeen, Scotland. “Galaxies at the edge of our universe are being seen for the first time, just as they are starting to form. Just sign up and answer simple questions about the shape of the galaxy that you are seeing. Anyone can do it, ages 10 and up!”
As we look at more distant objects in the universe, we see them as they were billions of years ago because light takes time to travel to us. With Webb, we can spot galaxies at greater distances than ever before. We’re seeing what some of the earliest galaxies ever detected look like, for the first time. The shapes of these galaxies tell us about how they were born, how and when they formed stars, and how they interacted with their neighbors. By looking at how more distant galaxies have different shapes than close galaxies, we can work out which processes were more common at different times in the universe’s history.
At Galaxy Zoo, you’ll first examine an image from the Webb telescope. Then you will be asked several questions, such as ‘Is the galaxy round?’, or ‘Are there signs of spiral arms?’. If you’re quick, you may even be the first person to see the galaxies you’re asked to classify.
“I’m amazed and honored to be one of the first people to actually see these images! What a privilege!” said volunteer Elisabeth Baeten from Leuven, Belgium.
Galaxy Zoo is a citizen science project with a long history of scientific impact. Galaxy Zoo volunteers have been exploring deep space since July 2007, starting with a million galaxies from a telescope in New Mexico called the Sloan Digital Sky Survey and then, moving on to images from space telescopes like NASA’s Hubble Space Telescope and ESA (European Space Agency)’s Euclid telescope. The project has revealed spectacular mergers, taught us about how the black holes at the center of galaxies affect their hosts, and provided insight into how features like spiral arms form and grow.
Now, in addition to adding new data from Webb, the science team has incorporated an AI algorithm called ZooBot, which will sift through the images first and label the ‘easier ones’ where there are many examples that already exist in previous images from the Hubble Space Telescope. When ZooBot is not confident on the classification of a galaxy, perhaps due to complex or faint structures, it will show it to users on Galaxy Zoo to get their human classifications, which will then help ZooBot learn more. Working together, humans and AI can accurately classify limitless numbers of galaxies. The Galaxy Zoo science team acknowledges support from the International Space Sciences Institute (ISSI), who provided funding for the team to get together and work on Galaxy Zoo. Join the project now.
Share
Details
Last Updated Apr 29, 2025 Related Terms
Astrophysics Division Citizen Science Get Involved James Webb Space Telescope (JWST) Explore More
2 min read Hubble Visits Glittering Cluster, Capturing Its Ultraviolet Light
Article
4 days ago
5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit
Article
6 days ago
3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge
Article
6 days ago
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.