Jump to content

What You Need To Know About the March 2025 Total Lunar Eclipse


Recommended Posts

  • Publishers
Posted

4 min read

What You Need To Know About the March 2025 Total Lunar Eclipse

The Moon will pass into Earth’s shadow and appear to turn red on the night of March 13 or early in the morning of March 14, depending on time zone. Here’s what you need to know about the total lunar eclipse.

The March 2025 total lunar eclipse will take place between late night on March 13 and early morning on March 14 across several time zones. In this data visualization, the Moon moves from right to left, passing through Earth’s shadow and leaving in its wake an eclipse diagram with the times (in UTC) at various stages of the eclipse. Credit: NASA’s Scientific Visualization Studio

What is a lunar eclipse?

lunar eclipse occurs when the Sun, Earth, and Moon align so that the Moon passes into Earth’s shadow. In a total lunar eclipse, the entire Moon falls within the darkest part of Earth’s shadow, called the umbra. When the Moon is within the umbra, it turns red-orange. Lunar eclipses are sometimes called “Blood Moons” because of this phenomenon.

Lunar Eclipse Cartoon
Alignment of the Moon, Earth, and Sun during a lunar eclipse (not to scale).
NASA’s Scientific Visualization Studio

How can I observe the eclipse?

You don’t need any special equipment to observe a lunar eclipse, although binoculars or a telescope will enhance the view. A dark environment away from bright lights makes for the best viewing conditions.

This eclipse will be visible from Earth’s Western Hemisphere.

A map showing where the March 13-14, 2025 lunar eclipse is visible. Contours mark the edge of the visibility region at eclipse contact times. The map shows that the eclipse will be visible from Earth's Western Hemisphere, with totality beginning at about 06:26 UTC / 2:26 a.m. EDT /11:26 p.m. PDT.
Map showing where the March 13-14, 2025 lunar eclipse is visible. Contours mark the edge of the visibility region at eclipse contact times, labeled in UTC.

What can I expect to observe?

Milestone: What’s happening:
Penumbral eclipse begins (8:57pm PDT, 11:57pm EDT, 03:57 UTC) The Moon enters the Earth’s penumbra, the outer part of the shadow. The Moon begins to dim, but the effect is quite subtle.
Partial eclipse begins (10:09pm PDT, 1:09am EDT, 05:09 UTC) The Moon begins to enter Earth’s umbra and the partial eclipse begins. To the naked eye, as the Moon moves into the umbra, it looks like a bite is being taken out of the lunar disk. The part of the Moon inside the umbra will appear very dark.
Totality begins (11:26pm PDT, 2:26am EDT, 06:26 UTC) The entire Moon is now in the Earth’s umbra. The Moon will turn a coppery-red. Try binoculars or a telescope for a better view. If you want to take a photo, use a camera on a tripod with exposures of at least several seconds.
Totality ends (12:31am PDT, 3:31am EDT, 07:31 UTC) As the Moon exits Earth’s umbra, the red color fades. It will look as if a bite is being taken out of the opposite side of the lunar disk as before.
Partial eclipse ends (1:47am PDT, 4:47am EDT, 08:47 UTC) The whole Moon is in Earth’s penumbra, but again, the dimming is subtle.
Penumbral eclipse ends (3:00am PDT, 6:00am EDT, 10:00 UTC) The eclipse is over.
Data visualization showing a telescopic view of the Moon as the March 2025 total lunar eclipse unfolds. Credit: NASA’s Scientific Visualization Studio

Why does the Moon turn red during a lunar eclipse?

The same phenomenon that makes our sky blue and our sunsets red causes the Moon to turn reddish-orange during a lunar eclipse. Sunlight appears white, but it actually contains a rainbow of components—and different colors of light have different physical properties. Blue light scatters relatively easily as it passes through Earth’s atmosphere. Reddish light, on the other hand, travels more directly through the air.

When the Sun is high on a clear day, we see blue light scattered throughout the sky overhead. At sunrise and sunset, when the Sun is near the horizon, incoming sunlight travels a longer, low-angle path through Earth’s atmosphere to observers on the ground. The bluer part of the sunlight scatters away in the distance (where it’s still daytime), and only the yellow-to-red part of the spectrum reaches our eyes.

During a lunar eclipse, the Moon appears red or orange because any sunlight that’s not blocked by our planet is filtered through a thick slice of Earth’s atmosphere on its way to the lunar surface. It’s as if all the world’s sunrises and sunsets are projected onto the Moon.

The landscape of the Moon, foreground, is reddened. In a black sky, Earth is backlit by the Sun.
During a total lunar eclipse, the Moon is reddened by sunlight filtered through Earth’s atmosphere.
NASA’s Scientific Visualization Studio

What else can I observe on the night of the eclipse?

Look to the western sky on the night of the eclipse for a glimpse of planets Jupiter and Mars. The Moon will be in the constellation Leo, under the lion’s hind paw, at the beginning of the eclipse; soon afterward, it will cross into the constellation Virgo. As Earth’s shadow dims the Moon’s glow, constellations may be easier to spot than usual.

Visit our What’s Up guide for monthly skywatching tips, and find lunar observing recommendations for each day of the year in our Daily Moon Guide.

Writers: Caela Barry, Ernie Wright, and Molly Wasser

Share

Details

Last Updated
Feb 06, 2025

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The two-week event, held at Vandenberg Space Force Base, focuses on strengthening international partnerships, enhancing operational collaboration and promoting responsible behavior in space.

      View the full article
    • By Space Force
      Guardians connected with members of Congress at a special screening of "The U.S. Space Force — America's Invisible Front Line" documentary at the U.S. Capitol Visitor Center April 30, 2025.

      View the full article
    • By European Space Agency
      Week in images: 28 April - 02 May 2025
      Discover our week through the lens
      View the full article
    • By NASA
      Skywatching Skywatching Home What’s Up What to See Tonight Meteor Showers Eclipses Moon Guide More Tips & Guides Skywatching FAQ Night Sky Network Eta Aquarids & Waiting for a Nova! 
      The first week of May brings the annual Eta Aquarid meteors, peaking on the 6th. And sometime in the next few months, astronomers predict a “new star” or nova explosion will become visible to the unaided eye. 
      Skywatching Highlights
      All Month – Planet Visibility: 
      Venus: Appears very bright and low in the east in the hour before sunrise all month.  Mars: Easy to find in the west in the first few hours of the night, all month long. Sets around midnight to 1 a.m. local time.  Jupiter: Shines brightly in the west following sunset all month. Early in the month it sets about two hours after the Sun, but by late May it’s setting only an hour after sunset.  Saturn: Begins the month next to Venus, low in the eastern sky before sunrise. Quickly separates from Saturn and rises higher in the sky each day before dawn.  Daily Highlights
      May 6 – Eta Aquarid Meteors – The peak of this annual shower is early on the morning of May 6th. The two or three nights before that are also decent opportunities to spy a few shooting stars. On the peak night this year, the Moon sets by around 3 a.m., leaving dark skies until dawn, for ideal viewing conditions. Seeing 10-20 meteors per hour is common for the Northern Hemisphere, while south of the equator, observers tend to see substantially more. 
      May 3 – Mars & Moon: The first quarter Moon appears right next to the Red Planet on the 3rd. Find them in the west during the first half of the night that evening. 
      All month – Venus & Saturn: Low in the eastern sky each morning you’ll find bright Venus paired with much fainter Saturn. They start the month close together, but Saturn pulls away and rises higher over the course of the month. 
      All month – Mars & Jupiter: The planets to look for on May evenings are Mars and Jupiter. They’re visible for a couple of hours after sunset in the western sky. 
      All month – Corona Borealis: Practice finding this constellation in the eastern part of the sky during the first half of the night, so you have a point of comparison when the T CrB nova appears there, likely in the next few months. 
      Transcript
      What’s Up for May? Four bright planets, morning and night, a chance of meteor showers, and waiting for a nova. 
      May Planet Viewing 
      For planet watching this month, you’ll find Mars and Jupiter in the west following sunset. Mars sticks around for several hours after it gets dark out, but Jupiter is setting by 9:30 or 10 p.m., and getting lower in the sky each day. The first quarter Moon appears right next to the Red Planet on the 3rd. Find them in the west during the first half of the night that evening. 
      Sky chart showing Venus and Saturn with the crescent Moon in the predawn sky on May 23., 2025. NASA/JPL-Caltech In the morning sky, Venus and Saturn are the planets to look for in May. They begin the month appearing close together on the sky, and progressively pull farther apart as the month goes on. For several days in late May, early risers will enjoy a gathering of the Moon with Saturn and Venus in the eastern sky before dawn. Watch as the Moon passes the two planets while becoming an increasingly slimmer crescent. You’ll find the Moon hanging between Venus and Saturn on the 23rd.   
      Eta Aquarid Meteor Shower 
      Early May brings the annual Eta Aquarid meteor shower. These are meteors that originate from Comet Halley. Earth passes through the comet’s dust stream each May, and again in October. Eta Aquarids are fast moving, and a lot of them produce persistent dust trains that linger for seconds after the meteor’s initial streak.  
      This is one of the best annual showers in the Southern Hemisphere, but tends to be more subdued North of the Equator, where we typically see 10-20 meteors per hour. On the peak night this year, the Moon sets by around 3 a.m., leaving dark skies until dawn, for ideal viewing conditions. While the peak is early on the morning of May 6th, the two or three nights before that are also decent opportunities to spy a few shooting stars. 
      Waiting for a Nova 
      Sky chart showing constellation Corona Borealis with the location where nova “T CrB” is predicted to appear. The view depicts the constellation with the nova occurring, indicated by an arrow. NASA/JPL-Caltech Astronomers have been waiting expectantly for light from a distant explosion to reach us here on Earth. An event called a nova is anticipated to occur sometime in the coming months. Some 3,000 light years away is a binary star system called T Coronae Borealis, or “T CrB.” It consists of a red giant star with a smaller white dwarf star orbiting closely around it. Now the giant’s outer atmosphere is all puffed up, and the dwarf star is close enough that its gravity continually captures some of the giant’s hydrogen. About every 80 years, the white dwarf has accumulated so much of the other star’s hydrogen, that it ignites a thermonuclear explosion. And that’s the nova. 
      T Coronae Borealis is located in the constellation Corona Borealis, or the “Northern Crown,” and it’s normally far too faint to see with the unaided eye. But it’s predicted the nova will be as bright as the constellation’s brightest star, which is about as bright as the North Star, Polaris. You’ll find Corona Borealis right in between the two bright stars Arcturus and Vega, and you can use the Big Dipper’s handle to point you to the right part of the sky. Try having a look for it on clear, dark nights before the nova, so you’ll have a comparison when a new star suddenly becomes visible there. 
      A sky chart indicating how to locate the constellation Corona Borealis between the bright stars Arcturus and Vega. The Big Dipper’s handle points in the direction of Corona Borealis. NASA/JPL-Caltech Now, you may have heard about this months ago, as astronomers started keeping watch for the nova midway through 2024, but it hasn’t happened yet. Predicting exactly when novas or any sort of stellar outburst will happen is tricky, but excitement began growing when astronomers observed the star to dim suddenly, much as it did right before its previous nova in 1946. When the nova finally does occur, it won’t stay bright for long, likely flaring in peak brightness for only a few days. And since it’s not predicted again for another 80 years, you might just want to join the watch for this super rare, naked eye stellar explosion in the sky! 
      Here are the phases of the Moon for May. 
      The phases of the Moon for May 2025. NASA/JPL-Caltech You can stay up to date on all of NASA’s missions exploring the solar system and beyond at NASA Science.
      I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month. 
      Keep Exploring Discover More Topics From NASA
      Skywatching



      Planets



      Solar System Exploration



      Moons


      View the full article
    • By NASA
      Explore This Section Projects Highlights Publications NASA Citizen Scientists Science Activation Resources 2 min read
      Amateur Radio Scientists Shine at the 2025 HamSCI Workshop
      A collage of Posters from HamSCI’s March workshop. You can read them all online! Love Ham Radio? The HamSCI project fosters collaboration between amateur radio operators and professional researchers. Its goals are to advance scientific research and understanding through amateur radio activities, encourage the development of modern technologies to support this research, and provide educational opportunities for the amateur community and the public. 
      HamSCI held its annual Workshop, ‘HamSCI’s Big Year’, at the New Jersey Institute of Technology in late March. Over 100 members of the HamSCI community attended: researchers, students (secondary through graduate level), and citizen scientist volunteers. Over the two-day event, in-person and virtual participants experienced twenty-five talks on topics ranging from analysis of HamSCI’s 2023/24 Festivals of Eclipse Ionospheric Science events to space weather observations made during the May 10, 2024 geomagnetic superstorm.
      The Workshop hosted a variety of Keynote and Invited Tutorial speakers, including distinguished scientists and leaders in the Amateur (ham) Radio community.  The Workshop concluded with a poster session, featuring current research, ongoing educational activities, and concepts for future events involving Sun-space-Earth science topics.  Posters were submitted from the US, Brazil, Egypt, the United Kingdom, and Turkey.
      Explore the workshop presentations and posters.  Videos of conference presentations will be available at the HamSCI website in a few months.
      HamSCI is supported by NASA, the National Science Foundation, and the Amateur Radio Digital Communications (ARDC) foundation.
      Share








      Details
      Last Updated May 01, 2025 Related Terms
      Citizen Science Get Involved Heliophysics Explore More
      8 min read How to Contribute to Citizen Science with NASA


      Article


      2 days ago
      3 min read Help Classify Galaxies Seen by NASA’s James Webb Space Telescope!


      Article


      2 days ago
      3 min read Nine Finalists Advance in NASA’s Power to Explore Challenge


      Article


      1 week ago
      View the full article
  • Check out these Videos

×
×
  • Create New...