Jump to content

Straight Shot: Hubble Investigates Galaxy with Nine Rings


Recommended Posts

  • Publishers
Posted
5 Min Read

Straight Shot: Hubble Investigates Galaxy with Nine Rings

A large galaxy is at center, and a significantly smaller galaxy is to its left. The large galaxy, nicknamed the Bullseye, is mostly face-on, but the top appears slightly tilted away. It has several rings. Its circular core is bright white at the very center, but light yellow overall. Going outward, there are gaps between the rings. The core is surrounded by two slightly lighter yellow rings, which also appear to be overlapping. The next ring is slightly more transparent and yellow. The two or three rings that are farther out are bluer, sometimes with blue clumps. The widest ring is also blue, but also the most transparent. At 9 o’clock is a small dwarf galaxy. It is about the same size as the yellow core of the Bullseye. The dwarf galaxy is blue, with many dots. It looks like the edge of the Bullseye might touch the dwarf galaxy. Both galaxies are set on the black background of space, which is dotted with a range of galaxies in different shapes, colors, and sizes, along with one foreground star at left.
LEDA 1313424, aptly nicknamed the Bullseye, is two and a half times the size of our Milky Way and has nine rings — six more than any other known galaxy.
Credits:
NASA, ESA, Imad Pasha (Yale), Pieter van Dokkum (Yale)

NASA’s Hubble Space Telescope has captured a cosmic bullseye! The gargantuan galaxy LEDA 1313424 is rippling with nine star-filled rings after an “arrow” — a far smaller blue dwarf galaxy — shot through its heart. Astronomers using Hubble identified eight visible rings, more than previously detected by any telescope in any galaxy, and confirmed a ninth using data from the W. M. Keck Observatory in Hawaii. Previous observations of other galaxies show a maximum of two or three rings.

“This was a serendipitous discovery,” said Imad Pasha, the lead researcher and a doctoral student at Yale University in New Haven, Connecticut. “I was looking at a ground-based imaging survey and when I saw a galaxy with several clear rings, I was immediately drawn to it. I had to stop to investigate it.” The team later nicknamed the galaxy the “Bullseye.”

A large galaxy is at center, and a significantly smaller galaxy is to its left. The large galaxy, nicknamed the Bullseye, is mostly face-on, but the top appears slightly tilted away. It has several rings. Its circular core is bright white at the very center, but light yellow overall. Going outward, there are gaps between the rings. The core is surrounded by two slightly lighter yellow rings, which also appear to be overlapping. The next ring is slightly more transparent and yellow. The two or three rings that are farther out are bluer, sometimes with blue clumps. The widest ring is also blue, but also the most transparent. At 9 o’clock is a small dwarf galaxy. It is about the same size as the yellow core of the Bullseye. The dwarf galaxy is blue, with many dots. It looks like the edge of the Bullseye might touch the dwarf galaxy. Both galaxies are set on the black background of space, which is dotted with a range of galaxies in different shapes, colors, and sizes, along with one foreground star at left.
LEDA 1313424, aptly nicknamed the Bullseye, is two and a half times the size of our Milky Way and has nine rings — six more than any other known galaxy. High-resolution imagery from NASA’s Hubble Space Telescope confirmed eight rings, and data from the W. M. Keck Observatory in Hawaii confirmed a ninth. Hubble and Keck also confirmed which galaxy dove through the Bullseye, creating these rings: the blue dwarf galaxy that sits to its immediate center-left.
NASA, ESA, Imad Pasha (Yale), Pieter van Dokkum (Yale)

Hubble and Keck’s follow-up observations also helped the researchers prove which galaxy plunged through the center of the Bullseye — a blue dwarf galaxy to its center-left. This relatively tiny interloper traveled like a dart through the core of the Bullseye about 50 million years ago, leaving rings in its wake like ripples in a pond. A thin trail of gas now links the pair, though they are currently separated by 130,000 light-years.

“We’re catching the Bullseye at a very special moment in time,” said Pieter G. van Dokkum, a co-author of the new study and a professor at Yale. “There’s a very narrow window after the impact when a galaxy like this would have so many rings.”

Galaxies collide or barely miss one another quite frequently on cosmic timescales, but it is extremely rare for one galaxy to dive through the center of another. The blue dwarf galaxy’s straight trajectory through the Bullseye later caused material to move both inward and outward in waves, setting off new regions of star formation.

How big is the Bullseye? Our Milky Way galaxy is about 100,000 light-years in diameter, and the Bullseye is almost two-and-a-half times larger, at 250,000 light-years across.

Graphic is evenly split. At left is an illustration of our Milky Way galaxy, seen face-on. It has large blue spiral arms, which rotate counterclockwise. Its center has a yellow bar. There are pink and blue areas of star formation throughout each spiral arm. At right is an illustration of the Bullseye Galaxy, cataloged LEDA 1313424, also seen face-on. It is about two-thirds larger than the Milky Way. The Bullseye has a central orange opaque dot surrounded by nine irregular rings. None of the rings are perfectly circular, and some appear to overlap. The rings closer to the center are opaque and orange. About halfway out, the rings appear whiter and have dots to reflect clusters of stars. The second farthest arm appears bluer. The most distant arm from the center of the galaxy is mostly faded, represented by a faint arc at the bottom. There’s a significant gap between it and the other rings in the galaxy. The background is black.
This illustration compares the size of our own Milky Way galaxy to gargantuan galaxy LEDA 1313424, nicknamed the Bullseye. The Milky Way is about 100,000 light-years in diameter, and the Bullseye is almost two-and-a-half times larger, at 250,000 light-years across.
NASA, ESA, Ralf Crawford (STScI)

The researchers used Hubble’s crisp vision to carefully to pinpoint the location of most of its rings, since many are piled up at the center. “This would have been impossible without Hubble,” Pasha said.

They used Keck to confirm one more ring. The team suspects a 10th ring also existed, but has faded and is no longer detectable. They estimate it might lie three times farther out than the widest ring in Hubble’s image.

A One-to-One Match with Predictions

Pasha also found a stunning connection between the Bullseye and a long-established theory: The galaxy’s rings appear to have moved outward almost exactly as predicted by models.

“That theory was developed for the day that someone saw so many rings,” van Dokkum said. “It is immensely gratifying to confirm this long-standing prediction with the Bullseye galaxy.”

If viewed from above, it would be more obvious that the galaxy’s rings aren’t evenly spaced like those on a dart board. Hubble’s image shows the galaxy from a slight angle. “If we were to look down at the galaxy directly, the rings would look circular, with rings bunched up at the center and gradually becoming more spaced out the farther out they are,” Pasha explained.

To visualize how these rings may have formed, think about dropping a pebble into a pond. The first ring ripples out, becoming the widest over time, while others continue to form after it.

The researchers suspect that the first two rings in the Bullseye formed quickly and spread out in wider circles. The formation of additional rings may have been slightly staggered, since the blue dwarf galaxy’s flythrough affected the first rings more significantly.

An illustration of the Bullseye Galaxy, cataloged LEDA 1313424, seen face-on. The Bullseye has a central orange opaque dot surrounded by nine irregular rings. None of the rings are perfectly circular, and some appear to overlap. The rings closer to the center are opaque and orange. About halfway out, the rings appear whiter and have dots to reflect clusters of stars. The second farthest arm appears bluer. The most distant arm from the center of the galaxy is mostly faded, represented by a faint arc at the bottom. There’s a significant gap between this and the other rings in the galaxy. Overlaid on all of the rings are dotted circles to indicate the galaxy’s separate rings, since many near the center overlap. The top right quadrant does not include the galaxy illustration. It only shows opaque lines indicating where the rings are. At the bottom is the label, Bullseye Galaxy. The background is black.
This illustration shows the massive galaxy nicknamed the Bullseye face-on. Dotted circles indicate where each of its rings are, which formed like ripples in a pond after a blue dwarf galaxy (not shown) shot through its core about 50 million years ago. NASA’s Hubble Space Telescope helped researchers carefully pinpoint the location of most of its rings, many of which are piled up at the center. Data from the W. M. Keck Observatory in Hawaii helped the team confirm another ring.
NASA, ESA, Ralf Crawford (STScI)

Individual stars’ orbits were largely undisturbed, though groups of stars did “pile up” to form distinguishable rings over millions of years. The gas, however, was carried outward, and mixed with dust to form new stars, further brightening the Bullseye’s rings.

There’s a lot more research to be done to figure out which stars existed before and after the blue dwarf’s “fly through.” Astronomers will now also be able to improve models showing how the galaxy may continue to evolve over billions of years, including the disappearance of additional rings.

Although this discovery was a chance finding, astronomers can look forward to finding more galaxies like this one soon. “Once NASA’s Nancy Grace Roman Space Telescope begins science operations, interesting objects will pop out much more easily,” van Dokkum explained. “We will learn how rare these spectacular events really are.”

The team’s paper was published on the February 4, 2025 in The Astrophysical Journal Letters.

The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.

Explore More

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD

Claire Blome and Ray Villard
Space Telescope Science Institute, Baltimore, MD

Share

Details

Last Updated
Feb 04, 2025
Editor
Andrea Gianopoulos

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Nancy Grace Roman Space Telescope will help scientists better understand our Milky Way galaxy’s less sparkly components — gas and dust strewn between stars, known as the interstellar medium.
      One of Roman’s major observing programs, called the Galactic Plane Survey, will peer through our galaxy to its most distant edge, mapping roughly 20 billion stars—about four times more than have currently been mapped. Scientists will use data from these stars to study and map the dust their light travels through, contributing to the most complete picture yet of the Milky Way’s structure, star formation, and the origins of our solar system.
      Our Milky Way galaxy is home to more than 100 billion stars that are often separated by trillions of miles. The spaces in between, called the interstellar medium, aren’t empty — they’re sprinkled with gas and dust that are both the seeds of new stars and the leftover crumbs from stars long dead. Studying the interstellar medium with observatories like NASA’s upcoming Nancy Grace Roman Space Telescope will reveal new insight into the galactic dust recycling system.
      Credit: NASA/Laine Havens; Music credit: Building Heroes by Enrico Cacace [BMI], Universal Production Music “With Roman, we’ll be able to turn existing artist’s conceptions of the Milky Way into more data-driven models using new constraints on the 3D distribution of interstellar dust,” said Catherine Zucker, an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts.
      Solving Milky Way mystery
      Scientists know how our galaxy likely looks by combining observations of the Milky Way and other spiral galaxies. But dust clouds make it hard to work out the details on the opposite side of our galaxy. Imagine trying to map a neighborhood while looking through the windows of a house surrounded by a dense fog.
      Roman will see through the “fog” of dust using a specialized camera and filters that observe infrared light — light with longer wavelengths than our eyes can detect. Infrared light is more likely to pass through dust clouds without scattering.
      This artist’s concept visualizes different types of light moving through a cloud of particles. Since infrared light has a longer wavelength, it can pass more easily through the dust. That means astronomers observing in infrared light can peer deeper into dusty regions.Credit: NASA’s Goddard Space Flight Center Light with shorter wavelengths, including blue light produced by stars, more easily scatters. That means stars shining through dust appear dimmer and redder than they actually are.
      By comparing the observations with information on the source star’s characteristics, astronomers can disentangle the star’s distance from how much its colors have been reddened. Studying those effects reveals clues about the dust’s properties.
      “I can ask, ‘how much redder and dimmer is the starlight that Roman detects at different wavelengths?’ Then, I can take that information and relate it back to the properties of the dust grains themselves, and in particular their size,” said Brandon Hensley, a scientist who studies interstellar dust at NASA’s Jet Propulsion Laboratory in Southern California.
      Scientists will also learn about the dust’s composition and probe clouds to investigate the physical processes behind changing dust properties.
      Clues in dust-influenced starlight hint at the amount of dust between us and a star. Piecing together results from many stars allows astronomers to construct detailed 3D dust maps. That would enable scientists like Zucker to create a model of the Milky Way, which will show us how it looks from the outside. Then scientists can better compare the Milky Way with other galaxies that we only observe from the outside, slotting it into a cosmological perspective of galaxy evolution.
      “Roman will add a whole new dimension to our understanding of the galaxy because we’ll see billions and billions more stars,” Zucker said. “Once we observe the stars, we’ll have the dust data as well because its effects are encoded in every star Roman detects.”
      Galactic life cycles
      The interstellar medium does more than mill about the Milky Way — it fuels star and planet formation. Dense blobs of interstellar medium form molecular clouds, which can gravitationally collapse and kick off the first stages of star development. Young stars eject hot winds that can cause surrounding dust to clump into planetary building blocks.
      “Dust carries a lot of information about our origins and how everything came to be,” said Josh Peek, an associate astronomer and head of the data science mission office at the Space Telescope Science Institute in Baltimore, Maryland. “Right now, we’re basically standing on a really large dust grain — Earth was built out of lots and lots of really tiny grains that grew together into a giant ball.”
      Roman will identify young clusters of stars in new, distant star-forming regions as well as contribute data on “star factories” previously identified by missions like NASA’s retired Spitzer Space Telescope.
      “If you want to understand star formation in different environments, you have to understand the interstellar landscape that seeds it,” Zucker said. “Roman will allow us to link the 3D structure of the interstellar medium with the 3D distribution of young stars across the galaxy’s disk.”
      Roman’s new 3D dust maps will refine our understanding of the Milky Way’s spiral structure, the pinwheel-like pattern where stars, gas, and dust bunch up like galactic traffic jams. By combining velocity data with dust maps, scientists will compare observations with predictions from models to help identify the cause of spiral structure—currently unclear.
      The role that this spiral pattern plays in star formation remains similarly uncertain. Some theories suggest that galactic congestion triggers star formation, while others contend that these traffic jams gather material but do not stimulate star birth.
      Roman will help to solve mysteries like these by providing more data on dusty regions across the entire Milky Way. That will enable scientists to compare many galactic environments and study star birth in specific structures, like the galaxy’s winding spiral arms or its central stellar bar.
      NASA’s Nancy Grace Roman Space Telescope will conduct a Galactic Plane Survey to explore our home galaxy, the Milky Way. The survey will map around 20 billion stars, each encoding information about intervening dust and gas called the interstellar medium. Studying the interstellar medium could offer clues about our galaxy’s spiral arms, galactic recycling, and much more.
      Credit: NASA, STScI, Caltech/IPAC The astronomy community is currently in the final stages of planning for Roman’s Galactic Plane Survey.
      “With Roman’s massive survey of the galactic plane, we’ll be able to have this deep technical understanding of our galaxy,” Peek said.
      After processing, Roman’s data will be available to the public online via the Roman Research Nexus and the Barbara A. Mikulski Archive for Space Telescopes, which will each provide open access to the data for years to come.
      “People who aren’t born yet are going to be able to do really cool analyses of this data,” Peek said. “We have a really beautiful piece of our heritage to hand down to future generations and to celebrate.”
      Roman is slated to launch no later than May 2027, with the team working toward a potential early launch as soon as fall 2026.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      Download additional images and video from NASA’s Scientific Visualization Studio.
      For more information about the Roman Space Telescope, visit:
      https://www.nasa.gov/roman
      By Laine Havens
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 16, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Galaxies Protostars Stars The Milky Way Explore More
      5 min read NASA’s Roman Team Selects Survey to Map Our Galaxy’s Far Side
      Article 2 years ago 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 5 months ago 7 min read One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions
      Article 2 months ago View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Science Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Surveys Cloudy Cluster
      This new NASA/ESA Hubble Space Telescope image features the nebula LMC N44C. ESA/Hubble & NASA, C. Murray, J. Maíz Apellániz This new NASA/ESA Hubble Space Telescope image features a cloudy starscape from an impressive star cluster. This scene is in the Large Magellanic Cloud, a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa. With a mass equal to 10–20% of the mass of the Milky Way, the Large Magellanic Cloud is the largest of the dozens of small galaxies that orbit our galaxy.
      The Large Magellanic Cloud is home to several massive stellar nurseries where gas clouds, like those strewn across this image, coalesce into new stars. Today’s image depicts a portion of the galaxy’s second-largest star-forming region, which is called N11. (The most massive and prolific star-forming region in the Large Magellanic Cloud, the Tarantula Nebula, is a frequent target for Hubble.) We see bright, young stars lighting up the gas clouds and sculpting clumps of dust with powerful ultraviolet radiation.
      This image marries observations made roughly 20 years apart, a testament to Hubble’s longevity. The first set of observations, which were carried out in 2002–2003, capitalized on the exquisite sensitivity and resolution of the then-newly-installed Advanced Camera for Surveys. Astronomers turned Hubble toward the N11 star cluster to do something that had never been done before at the time: catalog all the stars in a young cluster with masses between 10% of the Sun’s mass and 100 times the Sun’s mass.
      The second set of observations came from Hubble’s newest camera, the Wide Field Camera 3. These images focused on the dusty clouds that permeate the cluster, providing us with a new perspective on cosmic dust.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Sep 11, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Nebulae Star-forming Nebulae Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Nebulae


      These ethereal veils of gas and dust tell the story of star birth and death.


      Hubble’s Night Sky Challenge



      35 Years of Hubble Images


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Spies Galaxy with Lots to See
      This NASA/ESA Hubble Space Telescope features the galaxy NGC 7456. ESA/Hubble & NASA, D. Thilker While it may appear as just another spiral galaxy among billions in the universe, this image from the NASA/ESA Hubble Space Telescope reveals a galaxy with plenty to study. The galaxy, NGC 7456, is located over 51 million light-years away in the constellation Grus (the Crane).
      This Hubble image reveals fine detail in the galaxy’s patchy spiral arms, followed by clumps of dark, obscuring dust. Blossoms of glowing pink are rich reservoirs of gas where new stars are forming, illuminating the clouds around them and causing the gas to emit this tell-tale red light. The Hubble observing program that collected this data focused on the galaxy’s stellar activity, tracking new stars, clouds of hydrogen, and star clusters to learn how the galaxy evolved through time.
      Hubble, with its ability to capture visible, ultraviolet, and some infrared light, is not the only observatory focused on NGC 7456. ESA’s XMM-Newton satellite imaged X-rays from the galaxy on multiple occasions, discovering many so-called ultraluminous X-ray sources. These small, compact objects emit terrifically powerful X-rays, much more than researchers would expect, given their size. Astronomers are still trying to pin down what powers these extreme objects, and NGC 7456 contributes a few more examples.
      The region around the galaxy’s supermassive black hole is also spectacularly bright and energetic, making NGC 7456 an active galaxy. Whether looking at its core or its outskirts, at visible light or X-rays, this galaxy has something interesting for astronomers to study!
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Sep 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Science Behind the Discoveries



      Hubble Design



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Homes in on Galaxy’s Star Formation
      This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.
      This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.
      The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.
      The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.
      This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.
      The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.
      Explore More:

      Learn more about why astronomers study light in detail


      Explore the different wavelengths of light Hubble sees


      Explore the Night Sky: Messier 96

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Aug 29, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble’s 35th Anniversary



      Hubble’s Night Sky Challenge


      View the full article
    • By European Space Agency
      The NASA/ESA/CSA James Webb Space Telescope has revealed new details in the core of the Butterfly Nebula, NGC 6302. From the dense, dusty torus that surrounds the star hidden at the centre of the nebula to its outflowing jets, the Webb observations reveal many new discoveries that paint a never-before-seen portrait of a dynamic and structured planetary nebula.
      View the full article
  • Check out these Videos

×
×
  • Create New...