Jump to content

Recommended Posts

  • Publishers
Posted

3 min read

Persevering Through Science

A round, golden circle resembling a metal doughnut surrounds a dark tan circle, at the center of which appear to be multiple round layers in various shades of gold to tan, resembling stacked, see-through layers of mica.
NASA’s Mars Perseverance rover acquired this image of its 26th collected rock sample, “Silver Mountain,” using its onboard Sample Caching System Camera (CacheCam), located inside the rover underbelly. It looks down into the top of a sample tube to take close-up pictures of the sampled material and the tube as it’s prepared for sealing and storage. This image was acquired on Jan. 28, 2025 — sol 1401, or Martian day 1,401 of the Mars 2020 mission — at the local mean solar time of 18:49:01.
NASA/JPL-Caltech

The Mars 2020 Perseverance rover continues to live up to its name, pushing forward in search of ancient Martian secrets. Following a brief period of system verification and remote testing, our operations team is back at full strength, and Perseverance has been hard at work uncovering new geological insights.

We began our latest campaign at “Mill Brook,” a site surrounded by dusty, fine-grained paver stones. Here, we conducted an abrasion experiment at “Steve’s Trail,” allowing our remote sensing instruments to capture a before-and-after analysis of the rock surface. SuperCam (SCAM) used its LIBS and VISIR systems to investigate “Bad Weather Pond,” while Mastcam-Z (ZCAM) imaged the entire workspace. These observations provide invaluable data on the composition, texture, and potential alteration of these rocks.

After wrapping up at Mill Brook — including a ZCAM multispectral scan of “Berry Hill” — Perseverance took a 140-meter drive (about 459 feet) to “Blue Hill” at “Shallow Bay,” a site of immense scientific interest. The rocks here are rich in low-calcium pyroxene (LCP), making them one of the most intriguing sample targets of the mission so far.

The significance of Blue Hill extends beyond just this one location. The pyroxene-rich nature of the site suggests a potential link to a much larger rock unit visible in orbital HiRISE images. Given that this may be the only exposure of these materials within our planned traverse, our science team prioritized sampling this Noachian-aged outcrop, a rare window into Mars’ deep past.

And now, we are thrilled to announce:

Perseverance has successfully cored and sealed a 2.9-centimeter (1.1-inch) rock sample from Blue Hill, officially named “Silver Mountain.” This marks our first Noachian-aged outcrop sample, an important milestone in our mission to uncover the geological history of Jezero Crater. Since Shallow Bay-Shoal Brook is the only location along our planned route where this regional low-calcium pyroxene unit was identified from orbit, this sample is a one-of-a-kind treasure for future Mars Sample Return analyses.

As we enter the Year of the Snake, it seems fitting that serpentine-bearing rocks have slithered into our focus! While Blue Hill remains a top priority, the tactical team has been highly responsive to the science team’s overwhelming interest in the nearby serpentine-bearing outcrops. These rocks, which may reveal critical clues about past water activity and potential habitability, are now part of our exploration strategy.

Between our Noachian-aged pyroxene sample and the newfound focus on serpentine-bearing rocks, our journey through Jezero Crater has never been more exciting. Each step — each scan, each drive, each core sample — brings us closer to understanding Mars’ complex past.

As Perseverance continues to, well, persevere, and as we embrace the Year of the Snake, we can’t help but marvel at the poetic alignment of science and tradition. Here’s to a year of wisdom, resilience, and groundbreaking discoveries — both on Earth and 225 million kilometers (140 million miles) away!

Stay tuned as we unravel the next chapter in Mars exploration!

Written by Nicolas Randazzo, Postdoctoral Scientist at University of Alberta

Share

Details

Last Updated
Feb 04, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A group of students huddle around two of their classmates using virtual reality headsets to get an up-close view of a rocket during Education Day with the Lake Erie Crushers on Thursday, May 15, 2025. Credit: NASA/Chris Hartenstine NASA’s Glenn Research Center headed to the ballpark for Education Day with the Lake Erie Crushers on May 15. NASA Glenn staff showcased the science of NASA using portable wind tunnel demonstrations, virtual reality simulations, and other interactives inspired by NASA’s Artemis missions.  
      NASA Glenn Research Center engineers Heath Reising, far left, and Dave Saunders, far right, provide a wind tunnel demonstration to a group of aspiring STEM professionals during Education Day with the Lake Erie Crushers on Thursday, May 15, 2025.Credit: NASA/Chris Hartenstine Guests snapped photos at an “out-of-this-world” selfie station and learned how to take the first step toward a career in the aerospace or space industry through NASA’s internship programs. The mid-day game welcomed 3,575 fans, many who came from local schools on field trips for the special day. 
      Return to Newsletter View the full article
    • By NASA
      At COSI’s Big Science Celebration on Sunday, May 4, 2025, a young visitor uses one of NASA Glenn Research Center’s virtual reality headsets to immerse herself in a virtual environment. Credit: NASA/Lily Hammel  NASA’s Glenn Research Center joined the Center for Science and Industry (COSI) Big Science Celebration on the museum’s front lawn in Columbus, Ohio, on May 4. This event centered on science activities by STEM professionals, researchers, and experts from Central Ohio — and despite chilly, damp weather, it drew more than 20,000 visitors. 
      At COSI’s Big Science Celebration on Sunday, May 4, 2025, a young visitor steps out of the rain and into NASA Glenn Research Center’s booth to check out the Graphics and Visualization Lab’s augmented reality fluid flow table that allows users to virtually explore a model of the International Space Station. Credit: NASA/Lily Hammel  NASA’s 10-by-80-foot tent housed a variety of information booths and hands-on demonstrations to introduce guests to the vital research being performed at the Cleveland center. Popular attractions included a mini wind tunnel and multiple augmented and virtual reality demonstrations. Visitors also engaged through tangram puzzles and a cosmic selfie station. NASA Glenn’s astronaut mascot made several appearances to the delight of young and old alike.   
      Return to Newsletter View the full article
    • By European Space Agency
      After an extraordinary six-week voyage from northern Norway, the iconic Norwegian tall ship Statsraad Lehmkuhl has docked in Nice, France, concluding ESA’s 2025 Advanced Ocean Training course. Braving everything from wild storms to calm near-freezing seas, students aboard mastered techniques for collecting ocean measurements and harnessed satellite data to unlock insights into our blue planet.
      Led by experts, this real-world expedition offered more than education – it sparked curiosity and a deeper commitment to understanding and protecting our oceans.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of MaRS ICICLE concept.NASA/Aaswath Pattabhi Raman Aaswath Pattabhi Raman
      University of California, Los Angeles
      Exploration of Mars has captivated the public in recent decades with high-profile robotic missions and the images they have acquired seeding our collective imagination. NASA is actively planning for human exploration of Mars and laid out some of the key capabilities that must be developed to execute successful, cost-effective programs that would put human beings on the surface of another planet and bring them home safely. Efficient, flexible and productive round-trip missions will be key to further human exploration of Mars. New round-trip mission concepts however need substantially improved long-duration storage of cryogenic propellants in various space environments; relevant propellants include liquid Hydrogen (LH2) for high specific impulse Nuclear Thermal Propulsion (NTP) which can be deployed in strategic locations in advance of a mission. If enabled, such LH2 storage tanks could be used to refill a crewed Mars Transfer Vehicle (MTV) to send and bring astronauts home quickly, safely, and cost-effectively. A well-designed cryogenic propellant storage tank can reflect the vast majority of photons incident on the spacecraft, but not all. In thermal environments like Low Earth Orbit (LEO), there is residual heating due to light directly from the Sun, sunlight reflected off Earth, and blackbody thermal radiation from Earth. Over time, this leads to some of the propellant molecules absorbing the requisite latent heat of vaporization, entering the gas phase, and ultimately being released into space to prevent an unsustainable build-up of pressure in the tank. This slow “boil-off” process leads to significant losses of the cryogenic liquid into space, potentially leaving it with insufficient mass and greatly limiting Mars missions. We propose a breakthrough mission concept: an ultra-efficient round-trip Mars mission with zero boil off of propellants. This will be enabled by low-cost, efficient cryogenic liquid storage capable of storing LH2 and LOx with ZBO even in the severe and fluctuating thermal environment of LEO. To enable this capability, the propellant tanks in our mission will employs thin, lightweight, all-solid-state panels attached to the tank’s deep-space-facing surfaces that utilize a long-understood but as-yet-unrealized cooling technology known as Electro-Luminescent Cooling (ELC) to reject heat from cold solid surfaces as non-equilibrium thermal radiation with significantly more power density than Planck’s Law permits for equilibrium thermal radiation. Such a propellant tank would drastically lower the cost and complexity of propulsion systems for crewed Mars missions and other deep space exploration by allowing spacecraft to refill propellant tanks after reaching orbit rather than launching on the much larger rocket required to lift the spacecraft in a single-use stage. To achieve ZBO, a storage spacecraft must keep the storage tank’s temperature below the boiling point of the cryogen (e.g., < 90 K for LOx and < 20 K for liquid H2). Achieving this in LEO-like thermal environments requires both excellent reflectivity toward sunlight and thermal radiation from the Earth, Mars and other nearby bodies as well as a power-efficient cooling mechanism to remove what little heat inevitably does leak in, a pair of conditions ideally suited to the ELC cooling systems that will makes our full return-trip mission to Mars a success.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Jacob Shaw Capturing the high-stakes work behind NASA’s Airborne Science Program takes more than just technical skill – it takes vision. At NASA’s Armstrong Flight Research Center in Edwards, California, videographer Jacob Shaw brings that vision to life, documenting missions with a style and storytelling approach all his own.
      “Armstrong is full of cutting-edge flight research and remarkable people,” Shaw said. “Being able to shape how those stories are told, in my own style, is incredibly rewarding.”
      Armstrong is full of cutting-edge flight research and remarkable people. Being able to shape how those stories are told, in my own style, is incredibly rewarding.
      jacob Shaw
      NASA Videographer
      Shaw recently earned first place in NASA’s 2024 Videographer of the Year Awards, documentation category, for his film, “Reflections,” which chronicles the 2024 Airborne Science mission PACE-PAX – short for Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment. The campaign used NASA Armstrong’s ER-2 high-altitude aircraft to collect atmospheric and ocean data in support of the PACE satellite, launched in February 2024.
      “These missions are live, high-stakes operations – even if the crew makes it look effortless,” Shaw said. “I’m fascinated not just with capturing these moments, but with shaping them into meaningful stories through editing.”
      NASA videographer Jacob Shaw shares a moment with his constant companion during a lunch break in the cafeteria at NASA’s Armstrong Flight Research Center in Edwards, California, on May 21, 2025. Shaw recently earned first place in NASA’s 2024 Videographer of the Year Awards – documentation category – for his film, “Reflections,” which chronicles the 2024 Airborne Science mission PACE-PAX – short for Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment.NASA/Genaro Vavuris Shaw’s passion for video began early, inspired by watching his father film family memories with a VHS camcorder in the early 1990s. He said seeing those moments captured made him realize the power of documenting reality and inspired him to pursue videography as a professional and personal passion.
      “What I love most about creating videos for NASA at Armstrong Flight Research Center is the creative freedom I’m given to craft stories,” Shaw said. “I’m trusted to take a concept and run with it.”
      Since joining the video team in 2021, Shaw has documented dozens of missions, helping to share the center’s groundbreaking work with the world.
      “We’re a small crew that wears many hats, always stepping up to get the job done,” Shaw said. “I am thankful for their encouragement to submit my work [for this award], and proud to bring home the gold for Armstrong!”
      NASA videographer Jacob Shaw captures footage of the ER-2 aircraft inside a hangar at NASA’s Armstrong Flight Research Center in Edwards, California, in December 2024. Shaw recently earned first place in NASA’s 2024 Videographer of the Year Awards – documentation category – for his film, “Reflections,” which chronicles the 2024 Airborne Science mission PACE-PAX – short for Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment.NASA/Genaro Vavuris NASA videographer Jacob Shaw and the video team from NASA’s Armstrong Flight Research Center in Edwards, California, prepare to film the launch of NASA’s SPHEREx mission at Vandenberg Space Force Base. The mission, short for Specto-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer, launched on March 11, 2025, aboard a SpaceX Falcon 9 rocket, continuing NASA’s exploration of the cosmos – and its commitment to visual storytelling.NASA/Jim Ross Share
      Details
      Last Updated May 23, 2025 EditorDede DiniusContactDede Diniusdarin.l.dinius@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center People of Armstrong People of NASA Explore More
      3 min read Winners Announced in NASA’s 2025 Gateways to Blue Skies Competition
      Article 24 hours ago 5 min read NASA X-59’s Latest Testing Milestone: Simulating Flight from the Ground
      Article 1 week ago 4 min read Meet the Space Ops Team: Christine Braden
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aeronautics
      Humans In Space
      Universe
      View the full article
  • Check out these Videos

×
×
  • Create New...