Jump to content

Recommended Posts

  • Publishers
Posted

Seeds survive space

iss061e066885.jpg?w=2048
A close-up view of the Materials International Space Station Experiment hardware housing materials for exposure to space.
NASA

Researchers found that plant seeds exposed to space germinated at the same rate as those kept on the ground. This finding shows that plant seeds can remain viable during long-term space travel and plants could be used for food and other uses on future missions.

Materials International Space Station Experiment-14 exposed a variety of materials to space, including 11 types of plant seeds. The work also evaluated the performance of a new sample containment canister as a method of exposing biological samples to space while protecting their vigor.

Examining mechanisms of immune issues in space

iss068e018995orig.jpg?w=2048
NASA astronaut Josh Cassada stows samples from blood collection activities inside an International Space Station science freezer.
NASA

Using genetic analyses, researchers identified molecular mechanisms that cause changes in mitochondrial and immune system function seen during spaceflight. The findings provide insight into how the human body adapts in space and could guide countermeasures for protecting immune function on future missions.

International Space Station Medical Monitoring collects a variety of health data from crew members before, after, and at regular intervals during spaceflight. Evaluations fall into broad categories of medical, occupational, physical fitness, nutrition, and psychological or behavioral and include blood tests. Mitochondria are cell organelles that produce energy.

Reducing vision changes in space

An astronaut in a green shirt and beige pants works on a scientific experiment inside the International Space Station.
JAXA (Japan Aerospace Exploration Agency) astronaut Norishige Kanai installs the Mouse Habitat Unit on the space station.
JAXA/Norishige Kanai

Microgravity can cause changes in eye structure and function. Researchers found that artificial gravity may reduce these changes and could serve as a countermeasure to protect the vision of crew members on future missions.

Previous studies provide evidence that artificial gravity may protect against or mitigate negative effects of microgravity. An investigation from JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA’s Human Research and Space Biology Programs, Mouse Habitat Unit-8 looked at the long-term effects of spaceflight on gene expression patterns in mammals. More research is needed to identify the effects of other spaceflight stressors and determine what level and duration of gravitational force is needed to prevent or reduce damage to the retina or optic nerve.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By European Space Agency
      Week in images: 08-12 September 2025
      Discover our week through the lens
      View the full article
  • Check out these Videos

×
×
  • Create New...