Jump to content

Recommended Posts

  • Publishers
Posted
Image shows a solar array extending
Crews conduct a solar array deployment test on the spacecraft of NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located inside Vandenberg Space Force Base in California on Tuesday, Jan. 21, 2025.
USSF 30th Space Wing/Antonio Ramos

Technicians supporting NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission deployed and tested the spacecraft’s solar arrays at the Astrotech Space Operations processing facility at Vandenberg Space Force Base in California ahead of its launch next month.

The arrays, essential for powering instruments and systems, mark another milestone in preparing PUNCH for its mission to study the Sun’s outer atmosphere as it transitions into the solar wind. Technicians performed the tests in a specialized cleanroom environment to prevent contamination and protect the sensitive equipment.

Comprised of four suitcase-sized satellites working together as a constellation, PUNCH will capture continuous 3D images of the Sun’s corona and the solar wind’s journey into the solar system. Led by the Southwest Research Institute (SwRI) for NASA, the mission aims to deepen our understanding of the Sun and solar wind and how they affect humanity’s technology on Earth and our continued exploration of the solar system.

Successful solar array testing brings the spacecraft another step toward readiness for launch. The agency’s PUNCH mission is targeting liftoff as a rideshare with NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) on a SpaceX Falcon 9 rocket from Vandenberg’s Space Launch Complex 4E no earlier than Thursday, Feb. 27.

Image credit: USSF 30th Space Wing/Antonio Ramos

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The SpaceX Dragon spacecraft carrying the Axiom Mission 3 crew is pictured approaching the International Space Station on Jan. 20, 2024.Credit: NASA NASA, Axiom Space, and SpaceX are targeting 2:31 a.m. EDT, Wednesday, June 25, for launch of the fourth private astronaut mission to the International Space Station, Axiom Mission 4.
      The mission will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The crew will travel to the orbiting laboratory on a new SpaceX Dragon spacecraft after launching on the company’s Falcon 9 rocket. The targeted docking time is approximately 7 a.m. Thursday, June 26.
      This launch opportunity comes after NASA and Roscosmos officials discussed the status of the recent repair work in the transfer tunnel at the aft (back) most segment of the orbital laboratory’s Zvezda service module. Based on the evaluations, NASA and Roscosmos agreed to further lower the pressure in the transfer tunnel to 100 millimeters of mercury, and teams will continue to evaluate going forward. Safety remains a top priority for NASA and Roscosmos.
      “NASA and Roscosmos have a long history of cooperation and collaboration on the International Space Station. This professional working relationship has allowed the agencies to arrive at a shared technical approach and now Axiom Mission 4 launch and docking will proceed,” said acting NASA Administrator Janet Petro. “We look forward to the launch with Axiom Space and SpaceX for this commercial international mission.”
      For this mission, NASA is responsible for integrated operations, which begins during the spacecraft’s approach to the space station, continues during the crew’s stay aboard the orbiting laboratory conducting science, education, and commercial activities, and concludes once the spacecraft departs the station.
      Live coverage of launch and arrival activities will stream on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland, and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary.
      Once docked, the private astronauts plan to spend about two weeks aboard the orbiting laboratory, conducting a mission comprised of science, outreach, and commercial activities.
      As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Donald Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit STEM (science, technology, engineering, and mathematics) demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      The private mission also carries the first astronauts from Poland and Hungary to stay aboard the International Space Station.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, June 25
      12:30 a.m. – Axiom Space and SpaceX launch coverage begins.
      1:40 a.m. – NASA joins the launch coverage on NASA+.
      2:31 a.m. – Launch
      NASA will end coverage following orbital insertion, which is approximately 15 minutes after launch. As it is a commercial launch, NASA will not provide a clean launch feed on its channels.
      Thursday, June 26
      5 a.m. – Arrival coverage begins on NASA+, Axiom Space, and SpaceX channels.
      7 a.m. – Targeted docking to the space-facing port of the station’s Harmony module.
      Arrival coverage will continue through hatch opening and welcome remarks.
      All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.
      The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Share
      Details
      Last Updated Jun 24, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Crew Commercial Space Commercial Space Programs International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By Space Force
      Col. Nick Hague, the first Guardian to launch into space, visited Vandenberg Space Force Base.

      View the full article
    • By NASA
      Explore This Section Science Artemis Mission Accomplished! Artemis… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   5 min read
      Mission Accomplished! Artemis ROADS III National Challenge Competitors Celebrate their Achievements
      The NASA Science Activation program’s Northwest Earth and Space Sciences Pathways (NESSP) team has successfully concluded the 2024–2025 Artemis ROADS III National Challenge, an educational competition that brought real NASA mission objectives to student teams (and reached more than 1,500 learners) across the country. From December 2024 through May 2025, over 300 teams of upper elementary, middle, and high school students from 22 states participated, applying STEM (Science, Technology, Engineering, and Mathematics) skills in exciting and creative ways.
      Participants tackled eight Mission Objectives inspired by NASA’s Artemis missions, which aim to return humans to the Moon. Students explored challenges such as:
      Designing a water purification system for the Moon inspired by local water cycles Developing a Moon-based agricultural plan based on experimental results Programming a rover to autonomously navigate lunar tunnels Engineering and refining a human-rated water bottle rocket capable of safely returning a “chip-stronaut” to Earth Envisioning their future careers through creative projects like graphic novels or video interviews Exploring NASA’s Artemis program through a new Artemis-themed Lotería game In-person hub events were hosted by Northern Arizona University, Central Washington University, and Montana State University, where teams from Washington, Montana, and Idaho gathered to present their work, collaborate with peers, and experience life on a college campus. Students also had the chance to connect virtually with NASA scientists and engineers through NESSP’s NASA Expert Talks series.
      “Artemis ROADS III is NESSP’s eighth ROADS challenge, and I have to say, I think it’s the best one yet. It’s always inspiring to see so many students across the country engage in a truly meaningful STEM experience. I heard from several students and educators that participating in the challenge completely changed their perspective on science and engineering. I believe that’s because this program is designed to let students experience the joy of discovery and invention—driven by both teamwork and personal creativity—that real scientists and engineers love about their work. We also show students the broad range of STEM expertise NASA relies on to plan and carry out a mission like Artemis. Most importantly, it gives them a chance to feel like they are part of the NASA mission, which can be truly transformative.”
       – Dr. Darci Snowden, Director, NESSP
      NESSP proudly recognizes the following teams for completing all eight Mission Objectives and the Final Challenge:
      Space Pringles, 3rd-5th Grade, San Antonio, TX  Space Axolotls, 3rd-5th Grade, Roberts, MT  TEAM Wild, 6th-8th Grade, Eagle Mountain, UT  Pessimistic Penguins, 6th-8th Grade, Eagle Mountain, UT  Dwarf Planets, 6th-8th Grade, Eagle Mountain, UT  Astronomical Rovers, 6th-8th Grade, Eagle Mountain, UT  Cosmic Honeybuns, 6th-8th Grade, Eagle Mountain, UT  Houston we have a Problem, 6th-8th Grade, Eagle Mountain, UT  FBI Wanted List, 6th-8th Grade, Eagle Mountain, UT  Lunar Legion, 6th-8th Grade, San Antonio, TX  Artemis Tax-Free Space Stallions, 6th-8th Grade, Egg Harbor, NJ  Aquila, 6th-8th Grade, Gooding, ID  Space Warriors, 6th-8th Grade, Wapato, WA  Team Cygnus, 6th-8th Grade, Red Lodge, MT  Maple RocketMen, 6th-8th Grade, Northbrook, IL  RGB Hawks, 6th-8th Grade, Sagle, ID  The Blue Moon Bigfoots, 6th-8th Grade, Medford, OR  W.E.P.Y.C.K., 6th-8th Grade, Roberts, MT  Lunar Dawgz, 6th-8th Grade, Safford, AZ  ROSEBUD ROCKETEERS, 6th-8th Grade, Rosebud, MT  The Cosmic Titans, 6th-8th Grade, Thomson Falls, MT  The Chunky Space Monkeys, 6th-8th Grade, Naches, WA  ROSEBUD RED ANGUS, 9th-12th Grade, Rosebud, MT  Bulky Bisons, 9th-12th Grade, Council Grove, KS  The Falling Stars, 9th-12th Grade, Thomson Falls, MT  The Roadkillers, 9th-12th Grade, Thomson Falls, MT  The Goshawks, 9th-12th Grade, Thomson Falls, MT  Sequim Cosmic Catalysts, 9th-12th Grade, Sequim, WA  Spuddie Buddies, 9th-12th Grade, Moses Lake, WA  Astrocoquí 2, 9th-12th Grade, Mayaguez, PR  Big Sky Celestials, 9th-12th Grade, Billings, MT  TRYOUTS, 9th-12th Grade, Columbus, MT  Cosmonaughts, 9th-12th Grade, Columbus, MT  TCCS 114, 9th-12th Grade, Tillamook, OR  Marvin’s Mighty Martians, 9th-12th Grade, Simms, TX You can see highlights of these teams’ work in the Virtual Recognition Ceremony video on the NESSP YouTube channel. The presentation also features the teams selected to travel to Kennedy Space Center in August of 2025, the ultimate prize for these future space explorers!
      In addition to student engagement, the ROADS program provided professional development workshops and NGSS-aligned classroom resources to support K–12 educators. Teachers are invited to explore these materials and register for the next round of workshops, beginning in August 2025: https://nwessp.org/professional-development-registration.
      For more information about NESSP, its programs, partners, and the ROADS National Challenge, visit www.nwessp.org or contact info@nwessp.org.
       ———–
      NASA’s Northwest Earth and Space Science Pathways’ (NESSP) project is supported by NASA cooperative agreement award number 80NSSC22M0006 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      A water bottle rocket launches into the air carrying its precious chip-stronaut cargo. Share








      Details
      Last Updated Jun 23, 2025 Editor NASA Science Editorial Team Related Terms
      Artemis Biological & Physical Sciences Planetary Science Science Activation Explore More
      3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field


      Article


      5 days ago
      3 min read NASA Interns Conduct Aerospace Research in Microgravity


      Article


      4 weeks ago
      5 min read Percolating Clues: NASA Models New Way to Build Planetary Cores


      Article


      1 month ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      NASA tested RS-25 engine No. 20001 on June 20, at the Fred Haise Test Stand at NASA’s Stennis Space Center at Bay St. Louis, Mississippi. Test teams fired the engine for almost eight-and-a-half minutes (500 seconds), the same amount of time RS-25 engines fire during a launch of an SLS (Space Launch System) rocket on Artemis missions to the Moon. NASA NASA tested RS-25 engine No. 20001 on June 20, at the Fred Haise Test Stand at NASA’s Stennis Space Center at Bay St. Louis, Mississippi. Test teams fired the engine for almost eight-and-a-half minutes (500 seconds), the same amount of time RS-25 engines fire during a launch of an SLS (Space Launch System) rocket on Artemis missions to the Moon. The Artemis campaign will explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      Four RS-25 engines, built by contractor L3Harris Technologies (formerly Aerojet Rocketdyne), help power each SLS launch, producing up to 2 million pounds of combined thrust. During the test, operators also fired engine No. 20001 up to the 111% power level, the same amount of thrust needed to launch an SLS rocket, carrying the Orion spacecraft, to orbit. The full-duration “hot fire” was the first test since NASA completed certification testing for new production RS-25 engines in 2024.
      All RS-25 engines are tested and proven flightworthy at NASA Stennis. The test was conducted by a team of operators from NASA, L3Harris, and Syncom Space Services, prime contractor for site facilities and operations.
      Explore More NASA Stennis Images View the full article
    • By NASA
      On June 11, NASA’s LRO (Lunar Reconnaissance Orbiter) captured photos of the site where the ispace Mission 2 SMBC x HAKUTO-R Venture Moon (RESILIENCE) lunar lander experienced a hard landing on June 5, 2025, UTC.
      RESILIENCE lunar lander impact site, as seen by NASA’s Lunar Reconnaissance Orbiter Camera (LROC) on June 11, 2025. The lander created a dark smudge surrounded by a subtle bright halo.Credit: NASA/Goddard/Arizona State University. RESILIENCE was launched on Jan. 15 on a privately funded spacecraft.
      LRO’s right Narrow Angle Camera (one in a suite of cameras known as LROC) captured the images featured here from about 50 miles above the surface of Mare Frigoris, a volcanic region interspersed with large-scale faults known as wrinkle ridges.
      The dark smudge visible above the arrow in the photo formed as the vehicle impacted the surface, kicking up regolith — the rock and dust that make up Moon “soil.” The faint bright halo encircling the site resulted from low-angle regolith particles scouring the delicate surface.
      This animation shows the RESILIENCE site before and after the impact. In the image, north is up. Looking from west to east, or left to right, the area pictured covers 2 miles.Credit: NASA/Goddard/Arizona State University.  LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. NASA is returning to the Moon with commercial and international partners to expand human presence in space and bring back new knowledge and opportunities.
      More on this story from Arizona State University’s LRO Camera website
      Media Contact
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

      Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      lonnie.shekhtman@nasa.gov
      Share
      Details
      Last Updated Jun 20, 2025 EditorMadison OlsonContactMolly Wassermolly.l.wasser@nasa.govLocationGoddard Space Flight Center Related Terms
      Lunar Reconnaissance Orbiter (LRO) Earth's Moon View the full article
  • Check out these Videos

×
×
  • Create New...