Jump to content

Recommended Posts

  • Publishers
Posted

screenshot-2025-01-27-at-4-54-40 pm.png?
NASA

At NASA’s Langley Research Center, we are proud of our world-renowned role in innovating and improving the way we fly, explore, and understand our universe.” said NASA Langley leadership in an introductory message to Langley’s 2024 Annual Report. “The passion, dedication, and expertise of our workforce is bringing solutions to the nation’s toughest challenges in Aeronautics, Space Exploration, and Earth Science research.”

Featured achievements include work on NASA’s X-59 supersonic experimental aircraft, the largest air quality campaign to ever collaborate with countries across Asia and an autonomous robotic manipulation system that will one day provide NASA with a lunar moving crew.

Use this link to explore the 2024 Annual Report for NASA’s Langley Research Center.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:00:00 ESA’s state-of-the-art Biomass satellite launched aboard a Vega-C rocket from Europe’s Spaceport in Kourou, French Guiana. The rocket lifted off on 29 April 2025 at 11:15 CEST (06:15 local time).
      In orbit, this latest Earth Explorer mission will provide vital insights into the health and dynamics of the world’s forests, revealing how they are changing over time and, critically, enhancing our understanding of their role in the global carbon cycle. It is the first satellite to carry a fully polarimetric P-band synthetic aperture radar for interferometric imaging. Thanks to the long wavelength of P-band, around 70 cm, the radar signal can slice through the whole forest layer to measure the ‘biomass’, meaning the woody trunks, branches and stems, which is where trees store most of their carbon.
      Vega-C is the evolution of the Vega family of rockets and delivers increased performance, greater payload volume and improved competitiveness.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s annual Student Launch challenge will bring middle school, high school, and college students from around the country together to launch high-powered rockets and payloads. On Saturday, May 3, from 8:30 a.m.-2:30 p.m. CDT (or until the last rocket launches), student teams will convene for the agency’s 25th annual challenge at Bragg Farms in Toney, Alabama, near NASA’s Marshall Space Flight Center in Huntsville. 
      Hundreds of students from across the U.S. and Puerto Rico launched amateur rockets near NASA’s Marshall Space Flight Center in Huntsville, Alabama, during the Agency’s 2024 Student Launch competition. NASA Live streaming will begin at 8:20 a.m. CDT on NASA Marshall YouTube.
      Media interested in covering Student Launch events should contact Taylor Goodwin at 938-210-2891.
      Winners will be announced June 9 during a virtual awards ceremony once all teams’ flight data has been verified.
      Seventy-one teams participated this year; 47 teams are expected to launch in-person. Teams not traveling to Alabama are allowed to conduct final test flights at a qualified launch field near them.
      Schedule of Events:
      Rocket Fair: Friday, May 2, 2025, 3-6 p.m. at the Von Braun Center East Hall.
      A free event for the public to view rockets and meet the student teams.
      Launch Day: Saturday, May 3, 2025, gates open at 7 a.m. and the event runs from 8:30 a.m.-2:30 p.m. (or until last rocket launch) at Bragg Farms, in Toney, Alabama. This is a free public event with live rocket launches. Please be weather aware. Lawn chairs are recommended. Pets are not permitted.
      Back-up Launch Day: Sunday, May 4, 2025, is reserved as a back-up launch day in case of inclement weather. If needed, the event will run from 8:30 a.m. to 2:30 p.m. (or until last rocket launches) at Bragg Farms.
      About the Competition
      Student Launch provides relevant, cost-effective research and development of rocket propulsion systems and reflects the goals of NASA’s Artemis Program, which will establish the first long-term presence on the Moon and pave the way for eventual Mars missions.
      Each year, the payload component changes to reflect current NASA missions. As Student Launch celebrates its 25th anniversary, the payload challenge will include “reports” from STEMnauts, non-living objects representing astronauts. The STEMnaut “crew” must relay real-time data to the student team’s mission control, just as the Artemis astronaut crew will do as they explore the lunar surface.  
      Eligible teams compete for prizes and awards and are scored in nearly a dozen categories including safety, vehicle design, social media presence, and science, technology, engineering, and math (STEM) engagement.
      Marshall’s Office of STEM Engagement hosts Student Launch to encourage students to pursue careers in STEM through real-world experiences. Student Launch is a part of the agency’s Artemis Student Challenges– a variety of activities exposing students to the knowledge and technology required to achieve the goals of the Artemis missions.
      In addition to the NASA Office of STEM Engagement’s Next Gen STEM project, NASA Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and Bastion Technologies provide funding and leadership for the competition.
      For more information about Student Launch, please visit:
      https://www.nasa.gov/learning-resources/nasa-student-launch/
      Taylor Goodwin 
      NASA’s Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      taylor.goodwin@nasa.gov
      Facebook logo @NASAStudentLaunch @StudentLaunch Instagram logo @NASA_Marshall Share
      Details
      Last Updated Apr 29, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center For Colleges & Universities Learning Resources Explore More
      4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 5 days ago 6 min read NASA Tests Key Spacesuit Parts Inside This Icy Chamber
      Article 5 days ago 6 min read Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership
      At Norfolk Technical Center in Norfolk, Virginia, carpentry students in Jordan Crawford’s first-year class aren’t…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to ECF Home
      Transformational Advanced Energetic Propulsion
      Omid Beik
      Colorado School of Mines
      Development of a MW-Scale High-Voltage Multiphase Dual-Rotor Generator and Rectifier for a PMAD in an NEP System Ognjen Ilic
      University of Minnesota
      Concept Demonstration of Directed Energy Propulsion with Metasurface Lightsails Kenshiro Oguri
      Purdue University
      Origami-inspired Diffractive Sail for Directed Energy Propulsion Thomas Underwood
      University of Texas, Austin
      Stabilized Z-Pinch Fusion Driven Electromagnetic Propulsion Power Systems to Enable Small System Operations in Permanently Shadowed Lunar Regions
      Manan Arya
      Stanford University
      Lightweight Deployable Solar Reflectors Jessica Boles
      University of California, Berkeley
      Piezoelectric-Based Power Conversion for Lunar Surface Systems Christopher McGuirk
      Colorado School of Mines
      Power on the Dark Side: Stimulus-Responsive Adsorbents for Low-Energy Controlled Storage and Delivery of Low Boiling Fuels to Mobile Assets in Permanently Shaded Regions Shuolong Yang
      University of Chicago
      Developing Oxychalcogenide Membranes for Superconducting Power Transmission
      View the full article
    • By NASA
      7 min read
      Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights 
      One year ago today, a total solar eclipse swept across the United States. The event was a cornerstone moment in the Heliophysics Big Year, a global celebration of the Sun’s influence on Earth and the entire solar system. From October 2023 to December 2024 — a period encompassing two solar eclipses across the U.S., two new NASA heliophysics missions, and one spacecraft’s history-making solar flyby — NASA celebrated the Sun’s widespread influence on our lives.  
      An infographic showing key numbers summarizing the activities and events of the Heliophysics Big Year, which spanned from Oct. 14, 2023 – Dec. 24, 2024.  NASA/Miles Hatfield/Kristen Perrin Annular Solar Eclipse
      An annular (or “ring of fire”) solar eclipse occurred Oct. 14, 2023, and kicked off the Helio Big Year with a bang. Millions of people across North America witnessed the Moon crossing in front of the Sun, creating this brilliant celestial event. NASA’s live broadcast had more than 11 million views across different platforms.  
      On Oct. 14, 2023, an annular solar eclipse crossed North, Central, and South America. Visible in parts of the United States, Mexico, and many countries in South and Central America, millions of people in the Western Hemisphere were able to experience this “ring of fire” eclipse. NASA’s official broadcast and outreach teams were located in Kerrville, TX, and Albuquerque, NM, to capture the event and celebrate with the communities in the path of annularity. 
      Credit: NASA/Ryan Fitzgibbons  Before the eclipse, NASA introduced the 2023 Eclipse Explorer, an interactive map to explore eclipse details for any location in the United States. NASA shared tips on eclipse safety, including through a video with NSYNC’s Lance Bass and even with an augmented reality filter. 
      Scientists also studied conditions during the annular eclipse with sounding rockets, balloons, and amateur radio.  
      Total Solar Eclipse 
      On April 8, 2024, millions of people across North America experienced a total solar eclipse that darkened parts of 15 U.S. states in the path of totality.  
      Ahead of the event, NASA hosted a widespread safety campaign, handed out over 2 million solar viewing glasses, and produced an interactive map to help viewers plan their viewing experience. On eclipse day, NASA also hosted a live broadcast from locations across the country, drawing over 38 million views. 
      Researchers studied the eclipse and its effects on Earth using a variety of techniques, including international radar networks, scientific rockets, weather balloons, and even high-altitude NASA WB-57 jets. Several NASA-funded citizen science projects also conducted experiments. These projects included more than 49,000 volunteers who contributed an astounding 53 million observations.  
      This infographic shares metrics from citizen science projects that occurred during the total solar eclipse on April 8, 2024. NASA/Kristen Perrin “We have opened a window for all Americans to discover our connection to the Sun and ignited enthusiasm for engaging with groundbreaking NASA science, whether it’s through spacecraft, rockets, balloons, or planes,” said Kelly Korreck, a Heliophysics program scientist at NASA Headquarters in Washington. “Sharing the excitement of NASA heliophysics with our fellow citizens has truly been amazing.” 
      Science Across the Solar System 
      NASA’s heliophysics missions gather data on the Sun and its effects across the solar system.  
      The Atmospheric Waves Experiment (AWE) mission launched from NASA’s Kennedy Space Center in Florida Nov. 9, 2023, and was installed on the International Space Station nine days later. This mission studies atmospheric gravity waves, how they form and travel through Earth’s atmosphere, and their role in space weather. 
      Orbital footage from the International Space Station shows NASA’s Atmospheric Waves Experiment (AWE) as it was extracted from SpaceX’s Dragon cargo spacecraft. NASA/International Space Station On Nov. 4, 2024, the Coronal Diagnostic Experiment (CODEX) mission also launched to the space station, where it studies the solar wind, with a focus on what heats it and propels it through space.  
      Pictured is the CODEX instrument inside the integration and testing facility at NASA’s Goddard Space Flight Center. NASA/CODEX team The Aeronomy of Ice in the Mesosphere (AIM) mission ended after 16 years studying Earth’s highest clouds, called polar mesospheric clouds.  
      An artist’s concept shows the Aeronomy of Ice in the Mesosphere (AIM) spacecraft orbiting Earth.   NASA’s Goddard Space Flight/Center Conceptual Image Lab  NASA’s Ionospheric Connection Explorer (ICON) also ended after three successful years studying the outermost layer of Earth’s atmosphere, called the ionosphere. 
      NASA’s ICON, shown in this artist’s concept, studied the frontiers of space, the dynamic zone high in our atmosphere where terrestrial weather from below meets space weather above.  NASA’s Goddard Space Flight Center/Conceptual Image Lab  Voyager has been operating for more than 47 years, continuing to study the heliosphere and interstellar space. In October 2024, the Voyager 1 probe stopped communicating. The mission team worked tirelessly to troubleshoot and ultimately reestablish communications, keeping the mission alive to continue its research.  
      In this artist’s conception, NASA’s Voyager 1 spacecraft has a bird’s-eye view of the solar system. The circles represent the orbits of the major outer planets: Jupiter, Saturn, Uranus, and Neptune. Launched in 1977, Voyager 1 visited the planets Jupiter and Saturn. The spacecraft is now 13 billion miles from Earth, making it the farthest and fastest-moving human-made object ever built. In fact, Voyager 1 is now zooming through interstellar space, the region between the stars that is filled with gas, dust, and material recycled from dying stars. NASA’s Hubble Space Telescope is observing the material along Voyager’s path through space. NASA/STSci While the goal of the NASA heliophysics fleet is to study the Sun and its influence, these missions often make surprising discoveries that they weren’t originally designed to. From finding 5,000 comets to studying the surface of Venus, NASA highlighted and celebrated these bonus science connections during the Helio Big Year. 
      Solar Maximum 
      Similar to Earth, the Sun has its own seasons of activity, with a solar minimum and solar maximum during a cycle that lasts about 11 years. The Helio Big Year happened to coincide with the Sun’s active period, with NASA and NOAA announcing in October 2024 that the Sun had reached solar maximum, the highest period of activity. Some of the largest solar storms on current record occurred in 2024, and the largest sunspot in nearly a decade was spotted in the spring of 2024, followed by a colossal X9.0 solar flare Oct. 3, 2024.  
      Sunspots are cooler, darker areas on the solar surface where the Sun’s magnetic field gets especially intense, often leading to explosive solar eruptions. This sunspot group was so big that nearly 14 Earths could fit inside it! The eruptions from this region resulted in the historic May 2024 geomagnetic storms, when the aurora borealis, or northern lights, were seen as far south as the Florida Keys.
      Credit: NASA/Beth Anthony Viewers across the U.S. spotted auroras in their communities as a result of these storms, proving that you can capture amazing aurora photography without advanced equipment. 
      The Big Finale: Parker’s Close Approach to the Sun 
      NASA’s Parker Solar Probe holds the title as the closest human-made object to the Sun. On Dec. 24, 2024, Parker made history by traveling just 3.8 million miles from the Sun’s surface at a whopping 430,000 miles per hour.  
      “Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters. 
      Controllers have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. 
      Credit: NASA/Joy Ng Parker Solar Probe’s close approach capped off a momentous Heliophysics Big Year that allowed NASA scientists to gather unprecedented data and invited everyone to celebrate how the Sun impacts us all. In the growing field of heliophysics, the Helio Big Year reminded us all how the Sun touches everything and how important it is to continue studying our star’s incredible influence.  
      A Big Year Ahead 
      Though the Helio Big Year is over, heliophysics is only picking up its pace in 2025. We remain in the solar maximum phase, so heightened solar activity will continue into the near future. In addition, several new missions are expected to join the heliophysics fleet by year’s end. 
      The PUNCH mission, a set of four Sun-watching satellites imaging solar eruptions in three dimensions, and EZIE, a trio of Earth-orbiting satellites tracing the electrical currents powering Earth’s auroras, have already launched. The LEXI instrument, an X-ray telescope studying Earth’s magnetosphere from the Moon, also launched through NASA’s CLPS (Commercial Lunar Payload Services) initiative. 
      Future missions slated for launch include TRACERS, which will investigate the unusual magnetic environment near Earth’s poles, and ESCAPADE, venturing to Mars to measure the planet’s unique magnetic environment. 
      The last two missions will share a ride to space. The Carruthers Geocorona Observatory will look back at home, studying ultraviolet light emitted by the outermost boundaries of our planet’s atmosphere. The IMAP mission will instead look to the outermost edges of our heliosphere, mapping the boundaries where the domain of our Sun transitions into interstellar space. 
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated Apr 08, 2025 Editor Miles Hatfield Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate The Solar System The Sun Explore More
      5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves


      Article


      21 hours ago
      2 min read Hubble Studies a Nearby Galaxy’s Star Formation


      Article


      4 days ago
      3 min read Hubble Spots Stellar Sculptors in Nearby Galaxy


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Students from Universidad Católica Boliviana “San Pablo” compete during NASA’s 2024 Human Exploration Rover Challenge. The 2025 competition takes place Friday and Saturday, April 11-12, 2025, at the U.S. Space & Rocket Center’s Aviation Challenge course in Huntsville, Alabama. NASA NASA’s annual Human Exploration Rover Challenge returns Friday, April 11, and Saturday, April 12, with student teams competing at the U.S. Space & Rocket Center’s Aviation Challenge course near the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      Media are invited to watch as hundreds of students from around the world attempt to navigate a complex obstacle course by piloting a vehicle of their own design and production. Media interested in attending or setting up interviews should contact Taylor Goodwin in the Marshall Office of Communications at 938-210-2891 no later than 2 p.m. Thursday, April 10. 
      In addition to the traditional human-powered rover division, this year’s competition expands the challenge to include a remote-control division. The 2025 HERC Handbook includes guidelines for the new remote-control division and updates for the human-powered division.
      Participating teams represent 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations.
      The event is free and open to the public, with rover excursions from 7:30 a.m. to 3 p.m. CDT each day, or until the last rover completes the obstacle course. 
      Following the competition, NASA will host an in-person awards ceremony Saturday, April 12, at 5:30 p.m. inside the Space Camp Operations Center at the U.S. Space & Rocket Center. NASA and industry sponsors will present multiple awards highlighting team successes throughout the past eight-months-long engineering design project, including awards for best rover design, best pit crew, best social media presence, and many other accomplishments. 

      About the Challenge 
      Recognized as NASA’s leading international student challenge, the Human Exploration Rover Challenge aims to put competitors in the mindset of NASA’s Artemis campaign.  Teams pitch an engineering design for a lunar rover which simulates astronauts exploring the lunar surface while overcoming various obstacles. Eligible teams compete to be among the top three finishers in their divisions, and to win multiple awards, including best vehicle design, best rookie team, and more.  
      The annual challenge draws hundreds of students from around the world and reflects the goals of NASA’s Artemis campaign, which will establish the first long-term presence on the Moon and pave the way for eventual missions to Mars. 
      The event was launched in 1994 as the NASA Great Moonbuggy Race – a collegiate competition to commemorate the 25th anniversary of the Apollo 11 lunar landing. It expanded in 1996 to include high school teams, evolving again in 2014 into the NASA Human Exploration Rover Challenge. Since its inception, more than 15,000 students have participated – with many former students now working in the aerospace industry, including with NASA.   
      The Human Exploration Rover Challenge is managed by NASA Marshall’s Southeast Regional Office of STEM Engagement and is one of eight Artemis Student Challenges. NASA’s Office of STEM Engagement uses challenges and competitions to further the agency’s goal of encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics.  
      To learn more about the challenge, visit: 
      https://www.nasa.gov/roverchallenge/
      Taylor Goodwin 
      256-544-0034
      Marshall Space Flight Center, Huntsville, Alabama
      taylor.goodwin@nasa.gov
      Facebook logo @RoverChallenge@NASAMarshallCenter @RoverChallenge@NASA_Marshall Instagram logo @NASA_Marshall Share
      Details
      Last Updated Apr 04, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      General Explore More
      3 min read Caroline Cawthon: Supporting America’s Future in Low Earth Orbit 
      Article 17 hours ago 6 min read Back to Earth, Forward to the Future: NASA’s SpaceX Crew-9 Returns  
      Article 23 hours ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...